NTRU+: Compact Construction of NTRU
Using Simple Encoding Method

Authors Jong Hwan Park (Sangmyung University)
Jonghyun Kim (Korea University)

Contact jhpark@smu.ac.kr

Homepage https://www.ntruplus.org

Reference Code https://github.com/ntruplus/reference
Integrity Hash (SHA-256):
44fabbb5b 6edbb284 9322f4d4le 6b0e8088
74caa9f6 efcaa83b a72dceld 47512615

January 30, 2026

NTRU+: Compact Construction of NTRU
Using Simple Encoding Method

Jonghyun Kim* Jong Hwan Park’
January 30, 2026

Abstract

NTRU was the first practical public-key encryption scheme based on lattice problems over poly-
nomial rings and has remained resilient against cryptanalysis for several decades. However, classical
NTRU and its variants face several limitations, such as difficulty in achieving a negligible worst-case
correctness error with a moderate modulus, complex message sampling such as fixed hamming weight
sampling, and relatively slower performance compared to other lattice-based schemes.

In this work, we propose a new NTRU-based key encapsulation mechanism, called NTRU+, which
addresses the aforementioned Eah_wbacks. NTRU+ is constructed by sequentially applying two generic
transformations, ACWC; and FO ™ (a variant of the Fujisaki—-Okamoto transformation), where the former
enables negligible worst-case correctness error : afd the latter enables chosen-ciphertext security without
requiring re-encryption. Both ACWC, and FO™ leverage a randomness-recovery algorithm unique to
NTRU and a novel message-encoding method called the semi-generalized one-time pad (SOTP). In
particular, SOTP supports messages sampled from natural bit-string spaces with arbitrary distributions.
We provide three parameter sets for NTRU+ and present implementation results using NTT-friendly
rings over cyclotomic trinomials.

Keywords: NTRU, RLWE, Lattice-based cryptography, Post-quantum cryptography.

1 Introduction

The NTRU encryption scheme [19] was introduced in 1998 by Hoffstein, Pipher, and Silverman as the
first practical public-key encryption scheme based on lattice problems over polynomial rings. Its security
relies on the NTRU problem [19], which has remained resilient against significant cryptanalytic attacks for
over two decades. This longer history, compared to other lattice-based problems such as Ring-LWE and
Module-LWE, has been regarded as an important factor in NTRU being selected as a finalist in the NIST
PQC standardization process. Although the finalist NTRU [10] was not selected by NIST among the first
four quantum-resistant cryptographic algorithms, it still offers several distinct advantages over other lattice-
based schemes such as KYBER [34] and Saber [13]]. Specifically, NTRU provides (1) a compact ciphertext
structure consisting of a single polynomial and (2) potentially faster encryption and decryption without
requiring coefficient sampling for the public key polynomial.

“Korea University, Seoul, Korea. Email: yoswuk @korea.ac.kr.
"Sangmyung University, Seoul, Korea. Email: jhpark @smu.ac kr.

yoswuk@korea.ac.kr
jhpark@smu.ac.kr

The central design principle of NTRU is described over the ring R, = Z4[x]/(f(x)), where ¢ is a
positive integer and f(z) is a polynomial. The public key is generated as h = pg/(pf’ +1) € ROEI’ where g
and f’ are sampled from a narrow distribution v, and p is a positive integer that is smaller than and co-prime
to q (e.g., p = 3). The corresponding private key is f = pf’ + 1. To encrypt a message m sampled from the
message space M, one samples two polynomials r and m, with coefficients drawn from the distribution),
and computes the ciphertext ¢ = hr + m in R,. An (efficient) encoding method may be used to encode
m € M’ into m and r € R,. Alternatively, one may directly sample m and r from v, where m is regarded
as the message to be encrypted. To decrypt the ciphertext c, one computes cf in R, recovers m by deriving
the value cf modulo p, and (if necessary) decodes m to obtain the message m. The decryption of NTRU
works correctly if all the coefficients of the polynomial p(gr + f'm) + m are less than ¢/2. Otherwise, the
decryption fails, and the probability of failure is referred to as the correctness (or decryption) error.

In the context of chosen-ciphertext attacks, NTRU, like other public-key encryption schemes, must guar-
antee a negligible worst-case correctness error. This requirement is essential to prevent the leakage of secret
key information through adversarial decryption queries, as observed in attacks on lattice-based encryption
schemes [12, [22]. Roughly speaking, the worst-case correctness error refers to the maximum probability
of decryption failure taken over all possible messages. It reflects the possibility that an adversary A may
maliciously craft messages and randomness rather than sampling them from their intended distributions. In
the case of NTRU, a decryption failure on a ciphertext ¢ = hr 4+ m informs .4 that at least one coefficient
of p(gr + f'm) + m is greater than or equal to ¢/2. Therefore, if A has control over r and m, even a single
decryption failure may leak information about g and f’.

When designing NTRU, two approaches can be used to achieve negligible worst-case correctness error.
One is to draw m and r directly from the distribution v while setting the modulus ¢ to be relatively large.
Choosing a larger g guarantees, with high probability, that all coefficients of p(gr + f'm) + m are less than
q/2 for nearly all inputs m and r, although this comes at the cost of increased key and ciphertext sizes. This
approach is used by the third-round finalist NTRU [[10], whose parameters achieve perfect correctness (i.e.,
the worst-case correctness error becomes zero for all possible m and r). In contrast, the other approach [16]]
uses an encoding method in which a message m € M’ is used as a seed to sample m and r according to 1.
Under the Fujisaki-Okamoto (FO) transformation [[17]], decrypting a ciphertext c requires re-encrypting m
by following the same sampling process used in encryption. Thus, any ill-formed ciphertext that violates the
sampling rule will always fail to decrypt, implying that m and r must be honestly sampled by A according to
1. Consequently, by preventing A from controlling m and r, the NTRU scheme with the encoding method
achieves a worst-case correctness error that is close to its average-case correctness error.

Based on the above observation, [16] proposed generic (average-case to worst-case) transformationsE]
that make the average-case correctness error of an underlying scheme close to the worst-case error of the
transformed scheme. One of their transformations (denoted by ACWC) is based on an encoding method
called the generalized one-time pad (denoted by GOTP). Roughly speaking, ACWC works as follows: a
message m € M’ is first used to sample r and m; according to 1, and then mys = GOTP(m, G(m;))
is computed using a hash function G. Finally, m is constructed as m; || mg. If GOTP acts as a sampling
function such that its output follows 7/, then m and r are generated from m according to 1, which can be
verified during decryption using the FO transformation. Specifically, for two inputs m and G(m;) that are
sampled from {—1,0,1}* for some integer A\, my € {—1,0,1}" is computed by doing the component-
wise addition modulo 3 on the ternary strings m and G(m;). Thus, if G(m;) follows a uniformly random
distribution over {—1,0, 1}*, then m is hidden in my due to the one-time pad property.

! Alternatively, the public key can be generated as h = pg/f, but we use h = pg/(pf’ + 1) for more efficient decryption.
They proposed two transformations, ACWCy and ACWC, but we focus on ACWC, which does not increase the ciphertext size.

y Scheme NTRU[10] \ NTRU-B [16] \ NTRU+
NTT-friendly No Yes Yes
Correctness error Perfect Worst-case Worst-case
(m, r)-encoding No Yes Yes
Message set m,r < {—1,0,1}" m < {-1,0,1}* m <+ {0,1}"
Message distribution | Uniform/Fixed-weight Uniform Arbitrary
CCA transform DPKE + SXY variant ACWC + FO+ ACWC, + @L
Assumptions NTRU, RLWE NTRU, RLWE NTRU, RLWE
Tight reduction Yes No Yes

n: polynomial degree of the ring. A: length of the message. DPKE: deterministic public-key encryption.

SXY variant: SXY transformation [33]] described in the NTRU finalist.

Table 1: Comparison to previous NTRU constructions

However, an ACWC based on GOTP has two disadvantages in terms of security reduction and message
distribution. First, [16] showed that ACWC converts a one-way CPA (OW-CPA) secure underlying scheme
into a transformed one that remains OW-CPA secure, although the security reduction is looseE] and causes
an additional loss factor of gg, the number of random oracle queries. Second, ACWC requires that even
the message m € M’ follow a specific distribution because the security analysis of ACWC requires GOTP
to have the additional randomness-hiding property, meaning that G(m;) should also be hidden from the
output my. Indeed, the NTRU instantiation from ACWC, called ‘NTRU-B’ [16]], requires that 1 be chosen
uniformly at random from M’ = {—1,0, 1}*. Notably, it is difficult to generate exactly uniformly random
samples from {—1,0, 1} in constant time due to rejection sampling. Therefore, it was an open problem [16]]
to construct a new transformation that permits a different, more easily sampled distribution of a message
while relying on the same security assumptions.

1.1 Our Results

We propose a new practical NTRU construction called ‘NTRU+-" that addresses the two drawbacks of the
previous ACWC. To achieve this, we introduce a new generic ACWC transformation, denoted as ACWCo,,
which utilizes a simple encoding method. By using ACWC,, NTRU+ achieves a worst-case correctness
error close to the average-case error of the underlying NTRU. Additionally, NTRU+ requires the message
m to be drawn from M’ = {0,1}" (for a polynomial degree n), following an arbitrary distribution with
high min-entropy, and is proven to be tightly secure under the same assumptions as NTRU-B, the NTRU
and RLWE assumptions. To achieve chosen-ciphertext security, NTRU+ relies on a novel FO-equivalent
transform without re-encryption, which makes the decryption algorithm of NTRU+ faster than in the or-
dinary FO transform. In terms of efficiency, we use the idea from [31] to apply the Number Theoretic
Transform (NTT) to NTRU+ and therefore instantiate NTRU+ over a ring R, = Z,[z|/(f(z)), where
flx)=2a"— 2"/2 +1 is a cyclotomic trinomial. By selecting appropriate (n,q) and ¢, we suggest three pa-
rameter sets for NTRU+ and provide the implementation results for NTRU+4- in each parameter set. Tablel[]]
lists the main differences between the previous NTRU constructions [10, [16]] and NTRU+. In the following
section, we describe our technique, focusing on these differences.

3[[16]] introduced the g-OW-CPA security notion, where an adversary outputs a set Q of size at most ¢ and wins if the correct
message corresponding to a challenged ciphertext is in). We believe that g-OW-CPA leads to a security loss of g.

\ ACWC,[16] \ ACWC[16] \ ACWC,

Message encoding No GOTP SOTP
Message distribution Arbitrary Uniform Arbitrary
Ciphertext expansion Yes No No

Transformation OW-CPA — IND-CPA | OW-CPA — OW-CPA | OW-CPA — IND-CPA
Tight reduction No No Yes
Underlying PKE Any Any Injective + RR +
AC-MR + VC-MR
{AC, VC}-MR: {arbitrary ciphertext, valid ciphertext} message-recoverable. RR: randomness-recoverable.

Table 2: Comparison to previous ACWC transformations

ACWC; Transformation with Tight Reduction. ACWC; is a new generic transformation that enables
the aforementioned conversion from average-case to worst-case correctness error. To apply ACWC,, the
underlying scheme must satisfy injectivity, arbitrary-ciphertext and valid-ciphertext message-recoverability
(AC-MR and VC-MR), and randomness-recoverability (RR) properties that are all inherent to NTRUEI Ad-
ditionally, ACWC; introduces an encoding method called the semi-generalized one-time pad (denoted by
SOTP). In contrast to the ACWC in [16], ACWCy equipped with SOTP = (Encode, Decode) works as
follows: first, a message m € M’ is used to sample r according to v, and then m = Encode(m, G(r))
is computed, where the coefficients follow 1, using a hash function G. When decrypting a ciphertext
¢ = Enc(pk, m;r) under a public key pk, m is recovered by the usual decryption algorithm, and using
m, r is also recovered by a randomness-recovery algorithm. Finally, applying Decode to m and G(r) yields
the original message m.

The VC-MR property of the underlying scheme allows ACWCs to transform an OW-CPA secure scheme
into an IND-CPA secure one without any significant security loss. The proof idea is straightforward: unless
an IND-CPA adversary .4 queries the target randomness r to the (classical) random oracle G, A obtains
no information about the challenge message m; due to the message-hiding property of SOTP. However,
for each query r; made by A to G (i = 1,...,qg), a reductionist can verify whether r; corresponds to the
OW-CPA challenge ciphertext by using the message-recovery algorithm. Consequently, the reductionist can
identify the exact r; among the gg queries if A has queried it to G. In this security analysis, it is sufficient
for SOTP to satisfy only the message-hiding property, making it simpler than GOTP, which must ensure
both message-hiding and randomness-hiding.

Table [2] compares the previous ACWC transformations with our new ACWC,. In addition to ACWC
based on GOTP, [16] proposed another generic transformation, denoted by ACWC,, which does not use any
message-encoding method. In ACWC, a bit-string message m is encrypted as (Enc(pk, m;r), F(m) & m)
using a hash function F. This approach causes ciphertext expansion due to the additional term F(m) &
m, a redundancy that does not appear in either ACWC or ACWC,. Like ACWCy, ACWCy transforms an
OW-CPA secure scheme into an IND-CPA secure one, but its security reduction is not as tight as that of
ACWC,. Furthermore, neither ACWCy nor ACWC, requires any specific message distribution, whereas
ACWC requires m € M’ to be sampled uniformly from M’. In terms of applicability, while ACWCg and
ACWC are applicable to any OW-CPA secure scheme, ACWC, applies specifically to those that additionally
satisfy injectivity, AC-MR, VC-MR, and RR.

*In the decryption of NTRU with pk = h, given (pk, c, m), the randomness r is recovered as r = (¢ — m)h™'. Similarly,
given (pk, c, r), the message m is recovered as m = ¢ — hr.

L ==L

ACWC, FO FO
OW-CPA IND-CPA IND-CCA IND-CCA
Th. .6 (ROM) PKE Th. E1] (ROM) KEM Th. f3] (ROM)

PKE — — — KEM
———— ThEJQROM) ————— ThEJQROM) ———— ThEFQROM)
average-case T 7’: o worst-case / . y .
correctness error ~ correctness error Y e IO EEERen
GenNTRU[¢?] CPA-NTRU+ CCA-NTRU+ NTRU-+
— : tight security reduction - —» : non-tight security reduction

Figure 1: Overview of security reductions for KEM

FO-Equivalent Transform without Re-encryption. To achieve chosen-ciphertext (IND-CCA) security,
we apply the generic transform FO* to the ACWCs-derived scheme, which is IND-CPA secure. As with
other FO-transformed schemes, the resulting scheme from ACWCs, and FO* is still required to perform
re-encryption in the decryption process to check if (1) (m,r) are correctly generated from m and (2) a
(decrypted) ciphertext c is correctly encrypted from (m,r). However, by using the RR property of the
underlying scheme, we further remove the re-encryption process from FOL. Instead, the more advanced
transform (denoted by FO) simply checks whether r from the randomness-recovery algorithm is the same
as the (new) randomness r’ created from m. We show that FO ' is functionally identical to FO by proving
that the randomness-checking process in FO™ is equivalent to the re-encryption process FO™. The equiva-
lence proof relies mainly on the randomness-recoverability of the underlying schemes. As a result, although
the RR property seems to incur some additional decryption cost, it ends up making the decryption algorithm
faster than the original FO transform. Figure [I| presents an overview of security reductions from OW-CPA
to IND-CCA.

Simple SOTP Instantiation with More Convenient Sampling Distributions. As mentioned previously,
ACWC; is based on an efficient construction of SOTP = (Encode, Decode) that takes m and G(r) as inputs
and outputs m = Encode(m, G(r)). In particular, computing m = Encode(m, G(r)) requires that each
coefficient of m should follow v, while preserving the message-hiding property. To achieve this, we set
1) as the centered binomial distribution (CBD) v, with £ = 1, which is easily obtained by subtracting
two uniformly random bits from each other. For a polynomial degree n and hash function G : {0,1}* —
{0,1}2", m is chosen from the message space M’ = {0, 1}" for an arbitrary distribution (with high min-
entropy) and G(r) = y; || y2 € {0,1}"™ x {0,1}". SOTP then computes m = (m @ y1) — y2 by bit-wise
subtraction and assigns each subtraction value of m to the coefficient of m. By the one-time pad property,
it is easily shown that m @ y; becomes uniformly random in {0, 1}" (and thus message-hiding) and each
coefficient of m follows ;. Since r is also sampled from a hash value of m according to 1, all sampling
distributions in NTRU+ are easy to implement. We can also expect that, similar to the case of 1, the
SOTP is expanded to sample a centered binomial distribution reduced modulo 3 (i.e., 1)5) by summing up
and subtracting more uniformly random bits.

NTT-Friendly Rings Over Cyclotomic Trinomials. NTRU- is instantiated over a polynomial ring R, =
Zg[x]/{f(x)), where f(z) = 2™ — ™2 4 1 is a cyclotomic trinomial of degree n = 2°37. [31]] showed
that, with appropriate parameterization of n and ¢, such a ring can also provide NTT operation essentially
as fast as that over a ring R, = Z,[z]/(z" + 1). Moreover, because the choice of a cyclotomic trinomial is
moderate, it provides more flexibility to satisfy a certain level of security. Based on these results, we choose
three parameter sets for NTRU+, where the polynomial degree n of f(z) = 2™ — /2 41 is set to be 768,

864, and 1152, and the modulus q is 3457 for all cases. Table [/|lists the comparison results between finalist
NTRU [10]], KYBER [34], and NTRU+ in terms of security and efficiency. To estimate the concrete security
level of NTRU+, we use the Lattice estimator [1]] for the RLWE problem and the NTRU estimator [10] for
the NTRU problem, considering that all coefficients of each polynomial f/, g, r, and m are drawn according
to the centered binomial distribution ;. The implementation results in Table [/|are estimated with reference
and AVX?2 optimizations. We can observe that NTRU+ outperforms NTRU at a similar security level.

1.2 Related Works

The first-round NTRUEncrypt [36]] submission to the NIST PQC standardization process was an NTRU-
based encryption scheme with the NAEP padding method [23]]. Roughly speaking, NAEP is similar to our
SOTP, but the difference is that it does not completely encode m to prevent an adversary A from choosing
m maliciously. This is due to the fact that m := NAEP(m, G(hr)) is generated by subtracting two n-bit
strings m and G(hr) from each other, i.e., m — G(hr) by bit-wise subtraction, and then assigning them to
the coefficients of m. Since m can be maliciously chosen by .4 in NTRUEncrypt, m can also be maliciously
chosen, regardless of G(hr).

The finalist NTRU [10] was submitted as a key encapsulation mechanism (KEM) that provides four
parameter sets for perfect correctness. To achieve chosen-ciphertext security, [[10] relied on a variant of the
SXY [33]] conversion, which also avoids re-encryption during decapsulation. Similar to NTRU+, the SXY
variant requires the rigidity [7] of an underlying scheme and uses the notion of deterministic public-key
encryption (DPKE) where (m, r) are all recovered as a message during decryption. In the NTRU construc-
tion, the recovery of r is conceptually the same as the existence of the randomness-recovery algorithm RRec.
Instead of removing re-encryption, the finalist NTRU needs to check whether (m, r) are selected correctly
from predefined distributions.

In 2019, Lyubashevsky et al. [31] proposed an efficient NTRU-based KEM called NTTRU by applying
NTT to the ring defined by a cyclotomic trinomial Z, [z] /(" —2"/241). NTTRU was based on the Dent [14]
transformation without any encoding method, which resulted in an approximate worst-case correctness error
of 2713, even with an average-case error of 271239, To overcome this significant difference, NTTRU was
modified to reduce the message space of the underlying scheme, while increasing the size of the ciphertext.
This modification was later generalized to ACWC in [16].

In 2021, Duman et al. [[16] proposed two generic transformations, ACWCy and ACWC, which aim to
make the average-case correctness error of an underlying scheme nearly equal to the worst-case error of
the transformed scheme. Specifically, ACWC introduced GOTP as an encoding method to prevent A from
adversarially choosing m. While ACWC is simple, it requires a ciphertext expansion of 32 bytes. On
the other hand, ACWC does not require an expansion of the ciphertext size. The security of ACWCy and
ACWC was analyzed in both the classical and quantum random oracle models [16]. However, their NTRU
instantiation using ACWC has the drawback of requiring the message m to be chosen from a uniformly
random distribution over M’ = {—1,0, 1},

2 Preliminaries

2.1 Basic Notations

The set Z, is defined as {—(¢—1)/2,..., (¢ —1)/2}, where ¢ is a positive odd integer. Mapping an integer
a from Z to Z4 uses the modulo operation, setting x = a mod ¢ as the unique integer in Z, satisfying
¢ | (z — a). The polynomial ring R, is defined as Z,[x]/(f(x)) with a polynomial f(z). Cyclotomic
trinomials ®3,,(z) = 2" — 2™/? + 1 where n = 2 - 37 for some positive integers i and j are used as f(z) in
our construction. Polynomials in R, are denoted in non-italic bold as a, with a; as the i-th coefficient.

For sampling, u <— X indicates that v is sampled uniformly at random from a set X, and v <— D indi-
cates that u is drawn according to a distribution D. The notation u < D! forms a vector u = (uy,...,up)
with each u; drawn independently from D. Especially, a <— D indicates that all coefficients of a polynomial
a are drawn according to a distribution D. Sampling from the centered binomial distribution (CBD) vy,
involves 2k bits that are independent and uniformly random, summing the first & bits and the second £ bits
separately, then outputting their difference.

2.2 Public-Key Encryption

Definition 2.1 (Public Key Encryption). A public-key encryption scheme PKE = (Gen, Enc, Dec) with
message space M, randomness space R, and ciphertext space C consists of the following three algorithms:
* Gen(1*): The key generation algorithm Gen is a randomized algorithm that takes a security parameter

1* as input and outputs a pair of public/secret keys (pk, sk).

* Enc(pk,m;r): The encryption algorithm Enc is a randomized algorithm that takes a public key pk,
a message m € M, and randomness r € R as input and outputs a ciphertext ¢ € C. We often write
Enc(pk, m) to denote the encryption algorithm without explicitly mentioning the randomness.

* Dec(sk, ¢): The decryption algorithm Dec is a deterministic algorithm that takes a secret key sk and a
ciphertext ¢ € C as input and outputs either a message m € M or a special symbol | ¢ M to indicate
that c is not a valid ciphertext.

Correctness. We say that PKE has a (worst-case) correctness error § [20] if

E | max Pr[Dec(sk, Enc(pk,m)) # m]| <4,

me

where the expectation is taken over (pk, sk) < Gen(1*) and the choice of the random oracles involved (if
any). We say that PKE has an average-case correctness error ¢§ relative to the distribution 1,4 over M if

E [Pr[Dec(sk, Enc(pk, m)) # m]] <4,

where the expectation is taken over (pk, sk) <— Gen(1%), the choice of the random oracles involved (if any),
and m < Yuq.

Injectivity. Injectivity of PKE is defined via the following GAME INJ, which is shown in Figure 2| and
the relevant advantage of adversary A is

AdviNde (A) = Pr[INJag = 1].

Unlike the definition of injectivity in [8} 20], we define the injectivity in a computationally-secure sense.

GAME INJ

(pk, sk) < Gen(1)

(m,m/,r,r") + A(pk)

¢ = Enc(pk, m;r)

¢ = Enc(pk,m’;r")

return [(m,m/,r,r") € M2 x R2A (m,r) # (m/,7') Aec =]

A

Figure 2: GAME INJ for PKE

Spreadness. PKE is ~y-spread [20] if

. —1 P = Enc]{,‘7 ; > ,
e M, (sh.pk) < ogmax Pr le (pk,m;r)}) > 5

where the minimum is taken over all key pairs that can be generated by Gen. This definition can be relaxed
by considering an expectation over the choice of (pk, sk). PKE is weakly v-spread [13] if

—logE P =E k,m; >

where the expectation is over (pk, sk) < Gen(1%).

Randomness-Recoverability. PKE is defined as randomness-recoverable (RR) if there exists an algo-
rithm RRec such that, for all key pairs (pk, sk) < Gen(1%), and for any message m € M and for any
ciphertext ¢ € C, the following condition holds:

if r = RRec(pk, m,c) € R, then ¢ = Enc(pk, m;7).

Arbitrary-Ciphertext Message-Recoverability. PKE is arbitrary-ciphertext message-recoverable (AC-
MR) if there exists an algorithm MRec such that, for all key pairs (pk, sk) < Gen(1%), and for any random-
ness r € R, and for anly ciphertexts ¢ € C,

if m = MRec(pk,r,c) € M, then ¢ = Enc(pk, m;7).

Valid-Ciphertext Message-Recoverability. PKE is valid-ciphertext message-recoverable (VC-MR) if
there exists an algorithm MRec such that, for all key pairs (pk, sk) < Gen(1%), for any message m € M,
for any randomness r € R, and for any ciphertexts ¢ € C,

if ¢ = Enc(pk, m;r), then MRec(pk,r,c) = m.

Randomness-Uniqueness. PKE is defined as randomness-unique (RU) if for all key pairs (pk, sk) <
Gen(1?), and for any message m € M and any randomness 7,7’ € R, the following condition holds:

if Enc(pk, m;r) = Enc(pk, m;7"), thenr =1,

GAME OW-CPA GAME IND-CPA

1: (pk, sk) < Gen(1?) 1: (pk,sk) < Gen(1%)
2 m = P 2: (mo, m1) < Ao(pk)
3: ¢* < Enc(pk,m) 3: b+ {0,1}
4: m' + A(pk, c*) 4: ¢* < Enc(pk,myp)
5: return [m = m/] 5.0 < Ai(pk, c*)

6:

return [b = V']

Figure 3: GAMES OW-CPA and IND-CPA for PKE

GAME IND-CCA Decap(c # ¢¥)
1: (pk, sk) + Gen(1?) 1: return Decap(sk,c)
2: (Ko, c*) < Encap(pk)
3 K1+ K
4: b+« {0,1}
5: b« AP (pk, c*, K))
6: return [b=10]

Figure 4: GAME IND-CCA for KEM

Definition 2.2 (OW-CPA security of PKE). Let PKE = (Gen, Enc, Dec) be a public-key encryption scheme
with message space M. Onewayness under chosen-plaintext attacks (OW-CPA) for message distribution
Y is defined via the GAME OW-CPA, as shown in Figure 3] and the advantage function of adversary A is

AdvERETA(A) := Pr [OW-CPAfe = 1] .

Definition 2.3 (IND-CPA security of PKE). Let PKE = (Gen, Enc, Dec) be a public-key encryption scheme
with message space M. Indistinguishability under chosen-plaintext attacks (IND-CPA) is defined via the
GAME IND-CPA, as shown in Figure[3] and the advantage function of adversary A is

1

Adviyr “PA(A) == |Pr [IND-CPAZg = 1] — 5|

2.3 Key Encapsulation Mechanism

Definition 2.4 (Key Encapsulation Mechanism). A key encapsulation mechanism KEM = (Gen, Encap,
Decap) with a key space K consists of the following three algorithms:
* Gen(1*): The key generation algorithm Gen is a randomized algorithm that takes a security parameter
A as input and outputs a pair of public key and secret key, (pk, sk).

 Encap(pk): The encapsulation algorithm Encap is a randomized algorithm that takes a public key pk
as input, and outputs a ciphertext ¢ and akey K € K.

* Decap(sk, c¢): The decryption algorithm Decap is a deterministic algorithm that takes a secret key sk
and ciphertext c as input, and outputs either a key K € K or a special symbol L ¢ K to indicate that ¢
is not a valid ciphertext.

10

Correctness. We say that KEM has a correctness error 9 if
Pr[Decap(sk, c) # K|(c, K) + Encap(pk)] <9,
where the probability is taken over the randomness in Encap and (pk, sk) < Gen(1?).

Definition 2.5 (IND-CCA security of KEM). Let KEM = (Gen, Encap, Decap) be a key encapsulation
mechanism with a key space /C. Indistinguishability under chosen-ciphertext attacks (IND-CCA) is defined
via the GAME IND-CCA, as shown in Figure[4] and the advantage function of adversary A is as follows:

AdVINRICCA(A) = [Pr [IND-CCAZy = 1] — % ‘

2.4 Complexity Assumptions

This section outlines complexity assumptions used in NTRU+-. Specifically, it introduces the NTRU and
RLWE problems. Unlike the RLWE problem used in EIGamal-type schemes [2]], RLWE here is defined in
the computational sense.

Definition 2.6 (The NTRU problem [[19]). Let ¢ be a distribution over 12,. The NTRU problem NTRU,, , s
is to distinguish h = g(pf’ + 1)_1 € R, from u € R, where f', g < 1 and u < R,. The advantage of
adversary A in solving NTRU,, , , is defined as follows:

Adv]) TRV (A) = Pr[A(h) = 1] — Pr[A(u) = 1].

Definition 2.7 (The RLWE problem [30]). Let v be a distribution over I?,. The RLWE problem RLWE,, , .,
is to find s from (a,b = as + e) € R, X Ry, where a < R, s, e < 1. The advantage of an adversary A
in solving RLWE,, , ., is defined as follows:

Advﬁ,'zlv’\{pE(A) = Pr[A(a,b) = s].

2.5 Auxiliary Lemmas for the Security Proofs

Lemma 2.8 (Fundamental lemma of game-playing [6, Lemma 1]). Let G and H be identical-until-bad
games, meaning that both games maintain a boolean flag bad initially set to false and behave identically
until bad is set to true. Then, for any adversary A,

|Pr[G4 = 1] — Pr[H* = 1]| < Pr[G4 sets bad].

Lemma 2.9 (Classical O2H, Theorem 3 from the eprint version of [3]]). Let .S C R be random. Let G and
F be random functions satisfying Vr ¢ S : G(r) = F(r). Let z be a random classical value (S, G, F, z may
have an arbitrary joint distribution). Let C be a quantum oracle algorithm with query depth gg, expecting
input z. Let D be the algorithm that, on input z, samples a uniform i from {1, ..., g }, runs C right before its
i-th query to F, measures all query input registers, and outputs the set 7' of measurement outcomes. Then

Pr[CS(2) = 1] = PrlCF(2) = 1]| < 246\/PrSNT # 0 : T + DF ()]

Lemma 2.10 (Generic search problem [4} 25 26]). Let v € [0, 1]. Let Z be a finite set. Ny : Z — {0,1} is
the following function: For each z, N1 (z) = 1 with probability p, (p, < 7), and N;(2) = 0 else. Let Ny be
the function with Vz : No(z) = 0. If an oracle algorithm .4 makes at most ¢ quantum queries to Ny (or Ny),
then

Prb=1:b+ AN —Prjb=1:b« AV]| < 2¢/7.

11

3 ACWC, Transformation

We introduce our new ACWC transformation, denoted ACWCay, by presenting ACWCy[PKE, SOTP, G| for
a hash function G, as shown in Figure |5} Let PKE' = ACWC,[PKE,SOTP, G| be the resulting encryption
scheme. By applying ACWC, to an underlying PKE, we show that (1) PKE’ achieves a worst-case correct-
ness error that is essentially as small as the average-case error of PKE, and (2) PKE’ attains tight IND-CPA
security provided that PKE is OW-CPA secure.

3.1 SOTP

Definition 3.1. A semi-generalized one-time pad SOTP = (Encode, Decode), with a message space X, a
randomness space U (with corresponding distribution y,), and a code space) (with corresponding distri-
bution 1)y), consists of the following two algorithms:

* Encode(z,u) : The encoding algorithm Encode is a deterministic algorithm that takes a message
x € X and randomness u € U as input, and outputs acode y €).

* Decode(y, u) : The decoding algorithm Decode is a deterministic algorithm that takes a code y €)
and randomness u € U as input, and outputs a message z € X' U {L}.

It also satisfies the following three properties:
1. Decoding: For all z € X’ and u € U, Decode(Encode(z, u), u) = .
2. Message-hiding: For all x € X', Encode(z, u) with u <— 1y, follows the distribution .
3. Rigid: For all u € U and y €) such that Decode(y, u) #L, we have Encode(Decode(y, u),u) = y.

In contrast to the GOTP defined in [16], SOTP does not need to satisfy an additional randomness-hiding
property, which requires that the output y = Encode(z, u) follow the distribution 1y, while simultaneously
revealing no information about the randomness u. The absence of this additional requirement allows SOTP
to be designed more flexibly and efficiently than GOTP. Instead, SOTP is required to be rigid, meaning
that for all w € Y and y €), if x = Decode(y, u) #.L, then Encode(z,u) = y.

3.2 ACWC,

Let PKE = (Gen, Enc, Dec) be an underlying public-key encryption scheme with message space M and
randomness space R, where messages M € M and randomness € R are drawn from the distributions
g and g, respectively. Similarly, let PKE' = (Gen’, Enc’, Dec’) be the transformed encryption scheme
with message space M’ and randomness space R'. Let SOTP = (Encode, Decode) be a semi-generalized
one-time pad, where Encode : M’ x U/ — M and Decode : M x U — M’ are defined with respect
to distributions ¢y, and ¥ rq. Let G : 'R — U be a hash function whose outputs are independently /-
distributed. Then PKE’ = ACWC,[PKE, SOTP, G| is described in Figure [3]

Under the condition that Dec(sk, ¢) in Dec’ yields the same M as in Enc, the deterministic functions
RRec and Decode do not affect the correctness error of PKE’. Thus, the factor that determines the success or
failure of Dec’(sk, c) is the result of Dec(sk, ¢) within Dec’. This implies that the correctness error of PKE is
directly transferred to that of PKE’, and is eventually determined by how the randomness r € R and message
M € M are sampled in PKE’. We observe that 7 is drawn according to the distribution % and that M is

12

Gen’(1%) Dec/(sk, c)

1: (pk, sk) := Gen(1*) 1: M := Dec(sk,c)
2: return (pk, sk) 2: 1 := RRec(pk, M, ¢)
3: m := Decode(M, G(r))
Enc'(pk,m € M';ReR) 4: ifr ¢ R orm =1, return L
I: 7 < g using the randomness R 5: return m

2: M := Encode(m, G(r))
3: ¢ := Enc(pk, M;r)
4: return c

Figure 5: ACWC,[PKE,SOTP, G]

an SOTP-encoded element in M. Because each output of G is independently /;,-distributed, the message-
hiding property of SOTP ensures that M follows the distribution /x4 while hiding m. Consequently, both
M and r are chosen according to their originally intended distributions.

However, since the choice of the random oracle G can affect the correctness error of PKE’, we need to
incorporate this observation into the correctness analysis. Theorem [3.2] shows that, for all but a negligible
fraction of random oracles G, the worst-case correctness of PKE’ (transformed by ACWC,) is close to
the average-case correctness of PKE. This mirrors the idea underlying ACWC, and the proof strategy of
Theorem [3.2]is essentially the same as in [16] (Lemma 3.6 therein), except for slight modifications to the
message distribution.

Theorem 3.2 (Average-Case to Worst-Case Correctness error). Let PKE be RR and have a randomness
space R relative to the distribution)z. Let SOTP = (Encode, Decode), with Encode : M’ x U — M
and Decode : M x U — M/’, be a semi-generalized one-time pad (for distributions 1/, and). Let
G : R — U be a random oracle whose outputs are distributed according to ;. If PKE is §-average-case-
correct, then PKE' := ACWC,[PKE, SOTP, G] is ¢§'-worst-case-correct for

§' =5+ vl (1+ VM= Tlg=]2).
where ||z = /D, ¥r(r)%.

Proof. Taking expectation over G and (pk, sk) < Gen(1%), the worst-case correctness of PKE’ is

¥ =E [max/ Pr[Dec’(sk, Enc(pk,m)) # m]] = E[§ (pk, sk)],

me

where &' (pk, sk) := E[max,,c r Pr[Dec’ (sk, Enc’(pk, m)) # m]]| is the expectation over G for a fixed key
pair (pk, sk). For any fixed key pair and any positive real ¢ € R™, we have

& (pk, sk) = E| max Pr[Dec(sk, Enc'(pk,m)) # m]]
meM’

<t+ P();r max Pr[Dec’(sk, Enc'(pk,m)) # m] > t] (1)
|meM’
<t+Pr| max Pr [Dec(sk,Enc(pk,M;r)) # m] > t}
G _mEM’ 7’(—’(,[)7{
<t+P Pr |D k,E k, M; M| >t 2
< +Gr_n§%%{wein[ec(sk, Enc(pk, M;r)) # M] >] (2)

13

where M = Encode(m, G(r)). Note that Equation () holds by Lemma[3.4] and Equation (2) holds because

Pr [Dec'(sk,Enc(pk, M;7)) # m] < Pr [Dec(sk,Enc(pk, M;r)) # M].

T‘(—’LﬂR TR

For any fixed key pair and any positive ¢, let t(pk, sk) := u(pk, sk) + ||[Yr || - /(¢ + In|M’|) /2, where
1(pk, sk) := Pray »[Dec(sk, Enc(pk, M;r)) # M]. Then, we can use Lemma 3.3]to argue that

Pr| max Pr [Dec(sk,Enc(pk, M;r)) # M] > t(pk,sk)| < e “. 3)
G |meM’ T‘(—T/)R

To this end, we define
g(m,r,u) = (Encode(m,u),r) and B = {(M,r) € M x R | Dec(sk,Enc(pk,M;r)) # M},

which will be used in Lemma Note that Pry .y wey, [9(m,r,u) € B] = u(pk, sk) holds for all
m € M’ by the message-hiding property of the SOTP. For all m € M/,

Pr [g(m,r,u) € B] = Pr [(Encode(m, u),r) € B

YR, usdy rYR, Uy

-~ Pt [(M,r)e B

TR, M=t

= Pr [Dec(sk, Enc(pk, M;r)) # M]

PR, MPrm

= u(pk, sk).

Combining Equation (3)) with Equation (2) and taking the expectation yields

o' < E|u(pk, sk) + [rll - /(e + I [MT)/2 +]
=0+ Y=l - V(e +In|M])/2 + €7
and setting ¢ := — In||¢)z || yields the claim in the theorem. O

Corollary 3.3 (Average-Case to Worst-Case Correctness error). Let PKE be RR and have a randomness
space R relative to the distribution 1)z. Let SOTP = (Encode, Decode), with Encode : M’ x U — M
and Decode : M x U — M/’, be a semi-generalized one-time pad (for distributions 1/, and). Let
G : R — U be a random oracle whose outputs are distributed according to ;. If PKE is §-average-case-
correct, then

E[max Pr [Dec(sk, Enc(pk, M;r)) # M]] <d,

meM’ r—yr

where M = Encode(m, G(r)), and

5 = 8+ wml - (1+ v/ M~ il /2).

with [[¥r | == />, Y= (r)2 where the expectation is over G and (pk, sk) < Gen(1%).
Proof. The proof is analogous to that of Theorem [3.2] and we omit the detailed argument. O

14

Lemma 3.4. Let X be a random variable and let f be a non-negative real-valued function with f(X) < 1.
Then, forall t € RT,

E[f(X)] <t +Pr[f(X) > t].

Proof. By applying the law of total probability and by partitioning the domain of = into the cases where
f(z) < tand f(x) > t, we obtain

E[f(X)] = f(z)Pr[X = a]

fz)<t fz)=t
< D tPrX =al+) f(z)Pr(X =1
fx)<t f@)=t
<t+ Y f(z)Pr[X =a]
flz)=t
<t+ Y PrlX =a] =t+Prlf(X)>1].
fz)=t
The final equality follows from 3 ; (), Pr[X = a] = Pr[f(X) > t]. O

Lemma 3.5 (Adapting Lemma 3.7 from [16]). Let g be a function, and let B be a set such that

Ym e M, Pr [g(m,r,u) € B] < i “4)

rYR, Uy

for some p € [0,1]. Let G : R — U be a random function whose outputs are independently distributed

according to ¢y,. Define ||z | = V'3, ¥ (r)?. Then, for all but an e~ fraction of random functions G,
we have that Vm € M/,

Pr [g(m,r,G(r)) € B < p+ [[¢r] - v/(c + In|M])/2 ®)

T<—’L[JR
forany c € RT,

Proof. For fixedm € M’ and r € R, define p, := Prycy, [g(m,r,u) € B]. From Equation (), we know
that) 9 (r)pr < p. For each r, define a random variable X, whose value is determined as follows: G
chooses a random u = G(r) and then checks whether g(m,r, G(r)) € B; if it does, then we set X, = 1;
otherwise we set it to zero. Because G is a random function, the probability that X, = 1 is exactly p,.

The probability of Equation (5)) for our particular m is the same as the sum) 1z (7)X,, and we use
the Hoeffding bound to show that this value is not significantly larger than ;. We define the random variable
Y, = ¢Yr(r)X,. Notice that Y; € [0,¢x(r)], and E[}_, Y] = E[}_, ¢r(r)X,] = 3, ¥ (r)pr < p. By
the Hoeffding bound, we have for all positive ¢,

P [ZY >+t <exp (27 > exp (2t > (6)
T > < —— | = — .

- > vr(r)? 4=l
By setting ¢ > [[¢z|| - /(c + In[M])/2, for a fixed m, Equation (3) holds for all but an e~ - |M’|”!
fraction of random functions G. Applying the union bound yields the claim in the lemma. O

15

GAMES Go-Go G(T) /1G1-Go

G+ (R—=U) Gy 10 if3 (r,u) € Lg

2: L, Lr:=10 /IG1-G3 2: return u

3: (pk,sk) < Gen(1*) 30w Yy

4: (mo,m1) « AS(pk) 4: Lg:=LeU{(r,u)}
5: b« {0,1} 50 Ly =L, U{r}

6: TF — YR 6: return u

7: M* = Encode(my, G(1*)) Gy

8: M* +— Y /1G9

9: ¢* + Enc(pk, M*;r*)

,_
e

v < AS(pk, c)
: return [b=1V]

—
—

Figure 6: GAMES G(—G of Theorem [3.6]

3.2.1 Security Proof in the ROM

Theorem 3.6 (OW-CPA security of PKE "2 IND-CPA security of ACWCo[PKE, SOTP, G]). Let PKE be

a public-key encryption scheme with AC-MR, VC-MR, and RR properties. For any adversary .4 against the
IND-CPA security of ACWC,[PKE, SOTP, G], making at most ¢ random oracle queries, there exists an
adversary B against the injectivity of PKE and an adversary C against the OW-CPA security of PKE with

AdVK\ICQ/VCCZ?PKE,SOTP,G] (A) < AdviRe(B) + AdvRre A (),

where the running time of B and C is about Time(.A) + O(qg).

Proof. We prove the theorem by constructing adversaries 3 (Figure and C (Figure from A = (A, A1),
where B and C break the injectivity and the OW-CPA security of PKE, respectively, while .4 breaks the IND-
CPA security of ACWC,[PKE,SOTP, G].

GAME Gy. Gy (see Figure[6) is the original IND-CPA game with ACWC,[PKE, SOTP, G]. By the definition
of the IND-CPA game,

’PT[G64 = 1] - % = AdVIA’\“C?/fCZ?PKE,SOTP,G] (A).

GAME (. G is identical to G except that the random oracle G is instantiated via lazy sampling rather
than by sampling a full random function in advance. Concretely, we maintain a table £g: upon a query r,
if r has not yet been assigned a value, a fresh u < vy, is sampled and (7, u) is added to Lg; otherwise the
stored value is returned. Also, every input r queried by .4 is also recorded in the set £,.. Since lazy sampling
is equivalent to a uniform function, we have

Pr[Gyl = 1] = Pr[Gt = 1].

GAME G2. G is identical to GG; except that M* is sampled directly from o4 rather than being computed
as M* = Encode(my, G(r*)). Let BAD; be the event that A queries G at input 7* in G. If BAD; does not
occur, then G(r*) is uniform and independent of A’s view in GG1, hence by the message-hiding of SOTP the

16

B(pk) G(r)
1: Lg, L= 1. if 4 (r,u) € Lg
2 (mg,m1) + A§(pk) 2: return u

3: b« {0,1} 3 u— Yy

4: (M*,T*)<—¢M X YR 4: Lg:= EGu{(T,u)}
5: ¢* < Enc(pk, M*;r*) 50 Ly =L, U{r}
6: b+ AS(pk,c*) 6: return u

7: for r € L, with r £ r* do

8: M := MRec(pk,r,c*)

o if(M,r)e M xR

10: return (M, M* r r*)

11: (M,’I“) — Y X YR

12: return (M, r, M* r*)

Figure 7: Adversary B for the proof of Theorem [3.6]

distribution of M* = Encode(my, G(r*)) equals ¢ o¢. Therefore, by Lemma [2.8] unless BAD; occurs the
distributions of GG; and G5 are identical, and

| Pr[G{' = 1] — Pr[G4' = 1]| < Pr[BAD; in G3'].
Moreover, in G the pair (M*, r*) is sampled independently of b, hence
Pr[Gy' = 1] = 1.

Assume that BAD; occurs in Go. Let BAD3 be the event that A queries some r € £, with r ## r* and
M := MRec(pk,r,c*) € M. Then,

Pr[BAD; in G3'] = Pr[BAD; A BAD; in G'] + Pr[BAD; A =BAD; in G|
< Pr[BAD; in G3'] + Pr[BAD; A =BADs in G3'].

Assume that the event BADs occurs in Go. We construct an adversary 3 against GAME INJ for PKE as
follows. Given pk from its challenger, BB runs AS (pk), samples (M*,7*) < 1 X ¥, and generates c*
Enc(pk, M*;r*). It then runs A$ (pk, ¢*) while simulating the random oracle G. Since BAD5 occurs, there
exists some r € L, with r # r* such that M := MRec(pk, r, c¢*) € M. By the AC-MR property, (M, r) is
a valid pre-image of ¢*. Hence, B can identify such an r # r* in L, compute M := MRec(pk, r, ¢*), and
output (M, r, M*,r*). Therefore, B breaks GAME INJ for PKE whenever BAD; occurs. Thus,

Pr[BAD; in Go] < AdvBi:(B).

Assuming that the event BAD; A—-BAD, occurs in G5!, we construct an adversary C against GAME OW-CPA
for PKE as follows. The challenger provides C with (pk, ¢*), where ¢* is generated by sampling (M*, r*) <
Ym X g and computing ¢* < Enc(pk, M*;r*). Upon receiving (pk, c*), the adversary C runs b <
AS (pk) and then invokes A$ (pk, c*), while simulating the random oracle G. Since we assumed that BAD; A
—BAD3 occurs, we have 7* € L,., and by the VC-MR property it follows that M* = MRec(pk, r*, c*) € M

17

C(pk,c*) G(r)

1: Lg, L= 1. if 4 (r,u) € Lg

2: (mo, m1) < Ag(pk) 2: return u

3 0« AS(pk,c*) 30w Yy

4: forr € £, do 4: Lg:=LeU{(r,u)}
5. M := MRec(pk,r,c*) 50 Ly =L, U{r}

6: if(M,r)e MxR 6: return u

7 return M

8: return M <+ Yy

Figure 8: Adversary C for the proof of Theorem [3.6]

and ¢* = Enc(pk, M*;r*). Moreover, by the assumption ~BAD», there exists no » # r* such that
M := MRec(pk, r,c*) € M. Thus, C can recover M* uniquely. Hence,

Pr[BAD; A =BADy in G3'] < AdveReFA(C).

Putting everything together,

AdVIA'\“C?/K/%Z?PKE,SOTP,G] (A) = |Pr[Ggt = 1] — &

1
< PGl = 1] = Pr(G = 1|+ [Pr(Gy = 1] - 3
1=0
r[BAD, in G»] + Pr[BAD; A —~BAD; in G|

dvpRe(B) + AdveReSPA(C).

<P
A

3.2.2 Security Proof in the QROM

Theorem 3.7 (OW-CPA security of PKE QgM IND-CPA security of ACWCo[PKE, SOTP, G]). Let PKE

be a public-key encryption scheme with AC-MR, VC-MR, and RR properties. For any quantum adversary
A against the IND-CPA security of ACWCy[PKE,SOTP, G] with query depth at most gg, there exists a
quantum adversary B against the injectivity of PKE and a quantum adversary C against the OW-CPA security
of PKE with

AdVI/PC?/fCZ?PKE,SOTP,G] (A) < 2q6 \/AdVLNrgE(B) + AdvpRePA(C),

where the running time of 3 and C is bounded by Time(.A) + O(gg).

Proof. To prove the theorem, we consider a sequence of games Gy through G7, defined in Figures [9]
and[I1] We first analyze the transition from Gy to G2, and then apply Lemma[2.9]to bound the hop from G
to G's. A detailed description of the security proof is given below.

18

GAME Gy

G+~ (R—=U)

(pk, sk) < Gen(1?*)

(mo, m1) + AG (pk)

b+« {0,1}

r* ”(bR

M* < Encode(my, G(1*))
c* < Enc(pk, M*; r*)
v« AS(pk, c¥)

return [b =]

R AN A

Figure 9: GAME G for Theorem|[3.7]

GAME Gjy. Gy (see Figure J) is the original IND-CPA game with ACWC,[PKE, SOTP, G|. By definition,
we have

1 -
PGE = 1] - 1| = AR e sore (A

GAME G;. We define GG; in the same way as (G, except that part of the challenger’s logic is encapsulated
into an algorithm C©. In addition, before C® runs adversary A, we sample r* < 1z and make a classical
query u := G(r*). As these changes are only conceptual, it follows that

Pr[Gyl = 1] = Pr[Gt = 1].

GAME G3. We define G5 in the same way as (G1, except that we change the way G is defined. Instead of
choosing G uniformly, we sample F and uniformly and then set G := F(r* := u). In other words, G is
identical to F except that it returns v on input 7*. Since the distribution of (G, u) remains the same, we have

Pr[Git = 1] = Pr[Gs = 1].

GAME (F3. We define (3 in the same way as (G, except that algorithm C has oracle access to F instead
of G. Recall that in G the oracle G is defined as F(r* := u), which coincides with F on all inputs except
r*, i.e., they differ only on the set S := {r*}. This is exactly the setting of Lemma with the set S and
auxiliary input z := (7*, u). Hence, by applying the lemma with algorithm C, we obtain

|Pr[Gy' = 1] — Pr[G4' = 1]| < 2¢6\/Pr[G4 = 1].
Moreover, since the random value u is only used in Encode(m;, u), the message-hiding property of SOTP

implies that M* is independent of m;. Hence,

1
Pr[G = 1] = 5

GAME G4 and G5. We define G4 in the same way as G'3, except that it is arranged according to Lemma[2.9]

We then define G5 in the same way as G4, except that we change the way M™* is determined. Instead of
computing M* = Encode(my, u), we sample M* < 9. In G4, however, since u is sampled from ¢/, and

19

GAMES Gl-G5 CG(T*’ u)
G+ (R—=U) IGy 1. (pk, sk) « Gen(1*)
2 YR 2: (mo,ml) — Ag(pk:)
3w i= G(r") NGy 3: b« {0,1}; G1-Gy
4 F« (R—=U) IGo-G5 4: M* = Encode(my, u); 11G1-Gy
50w Yy NG2-Gs 50 M* < tpqs IG5
6: G:=F(r*:=u) Ga-Gs 6 ¢* « Enc(pk, M*;r*)
7: w < CO(r*, u) I1G1-G2 7. b+ A$(pk,c*)
8: w < CT(r*, u) /IGs 8 return [b=1V]
9: T ¢ DF(r*,u) I1G4-Gs DF(r,u)
10: return w G1-G3 . ; {1,-- ,qc}
11: return [r* € T IG4-Gs 5. Run CF(r*, w) till i-th query
3: T < measure F-query
4: return T'

Figure 10: GAMES G-Gj5 for the proof of Theorem [3.7]

used only for Encode(my, u), the message-hiding property of SOTP ensures that M/* = Encode(mp, u) is
distributed according to i) ». Hence,

Pr[Gy = 1] = Pr[GE = 1].

GAME (. We define G in the same way as G5, except that the challenger’s procedure is rearranged as
shown in Figure[I1] Since this change is only conceptual, we have

Pr[G¢' = 1] = Pr[G§ = 1].
Let BAD be the event that there exists » € T with r # r* and M := MRec(pk, r, c*) € M. Then,
Pr[G§ = 1] = Pr[G§ = 1 ABAD in G§] + Pr[G§ = 1 A =BAD in G§]
< Pr[BAD in G§] + Pr[G§ = 1 A =BAD in G§]

GAME G'7,. We define G'7, by wrapping the generation of (M*, r*) and ¢* into the adversary . Also, unlike
Gé, after £ outputs T', BB searches for some r € T with r # r* such that M = MRec(pk,r,c*) € M, and
outputs (M, M*, r,r*) if such an r exists. Otherwise, it samples random (/,) and outputs (M, M*,r,).
Suppose such an r exists. By AC-MR, the pair (M, r) is a valid pre-image of ¢*. Since (M*,7*) is also a
pre-image of ¢* and r # r*, the tuple (M, M*,r,r*) is a valid solution to the injectivity game. Therefore,
we have

Pr[BAD in G§] = Pr[GE, = 1].
Moreover, by definition, G7, is exactly the INJ game for PKE run with adversary B; hence
Pr[GE, = 1] = AdvBi:(B).

GAME G7;,. We define Gy, in the same way as G, except that algorithm C explicitly outputs (M, r) and
the game returns 1 if (M*,r*) = (M, r). (see Figure[11). If there exist r* € T and there does not exist

20

GAMES Gg

(pk, sk) <+ Gen(1*)
(M*,T‘*) —PMm X YR
c* < Enc(pk, M*;r*)
T < E(pk, c¥)

return [r* € 77

AN

GAMES G,
1: (pk, sk) < Gen(1?)
2: (M, M*,r,r*) «+ B(pk)
3: ¢ = Enc(pk, M;r)
4: ¢ = Enc(pk, M*;r*)
(M, M*,r,7*) € M? x R? ﬂ

5: return
[[/\ (M,r) # (M*, ") ANe="C

GAMES G7p

(pk, sk) < Gen(17)
(M*,T‘*) —PMm X YR
c* < Enc(pk, M*;r*)
M <+ C(pk,c*)
return [AM* = M]

AN

i<+ {1,---
Run until ¢-th F-query:
A (pk)
Af (pk, ¢*)

T <measure F-query

return

pk)

(M,

(M,r)
return

C(pk,c)

1:
2
3:
4
5

.46}

T

) < Pm X YR
c* < Enc(pk, M*;1*)
T < E(pk,c*)
for r € T with r # r* do
if M = MRec(pk,r,c*) € M
return (M, M* r r¥)

—Ypm X PR
(M, r, M*,r*)

: T+ E(pk, c¥)

: forr € T do

if M = MRec(pk,r,c*) € M
return (M, r)

s return (M, r) < Py X YR

Figure 11: GAMES G¢-G7 for the proof of Theorem [3.7]

r € T with r # r* and M = MRec(pk,r,c*) € M, by VC-MR, we can recover r* =

Therefore, we have

Pr[G¢ = 1 A —=BAD in G§]

By definition, G7; is exactly the OW-CPA game for PKE run with adversary C; hence

Pr[G¢ = 1]

Combining all (in)equalities and bounds, we obtain

= AdvREPA(C).

Adv !A'\\IC?NCZ[APKE sotp,g(A) < 2q6 \/ AdvpRe(

which concludes the proof.

21

(B) + AdveRe <A (C),

MRec(pk, r*, c*).

3.2.3 Spreadness of PKE’

Theorem 3.8. If PKE is (weakly) v-spread, SOTP has the message hiding property, and G is modeled as a
random oracle, then PKE' = ACWC,[PKE, SOTP, G| is (weakly) y-spread.

Proof. For a fixed (pk, sk) and m, we consider the probability Prr. »/ glc = Enc’(pk,m; R)] for any
ciphertext c. Since G is modeled as a random oracle, the probability is taken over the random choice of G.
Given that r is sampled as r < 1) using the randomness R < R/, the probability can be rewritten as

= Encd'(pk,m; R)] = P = Enc(pk, Encode(m, G(r)); r)].
o, o= Enc/(phmi)] = Pr e = Enc(pk, Encode(m, G(r)):)]

By the law of total probability on possible r < 1z, we have:

Pr [c = Enc(pk,Encode(m, G(r));r)] = Z Iér[c = Enc(pk, Encode(m, G(r;));)] Pr [r=r].

—Rr,G .
YR reR rYRr

Since G(r;) is 1y-distributed, the message hiding property of SOTP ensures that the output M = Encode(m, G(r;))
is 1 p¢-distributed over the random choice of G:

Z Pér[c = Enc(pk, Encode(m, G(r;));7i)] Pr [r=r]

riER TEYR
= Z Pr [c = Enc(pk,Encode(m,u);r;)] Pr [r=r]
nen““"“ rer

= 2 M<131rpM [c = Enc(pk, M;r;)] Nzl/:R[r =1yl

For the ease of analysis, we define an indicator function I(pk, M, r, c) = [¢ == Enc(pk, M;r)]. Then,

Pr [c=Enc(pk, M;r;)] Pr [r=r]

e MM repr
TR 2 [M) B = Py, =0
- M;M JBr [e=Enc(pk, Myr)] | Pr [M =M.

Considering Pr,. . [c = Enc(pk, M;;r)] as the y-spreadness of PKE on any message 1, the +'-
spreadness of PKE’ is upper-bounded as follows:

P = Enc ; = P =E M;;r)] - Pr [M =M,
pBr [e=Enc(pbmiR)] = 3 Pr [o=Enclpk, M;ir)] | Pr [M =M
MjeM
<277 Pr [M=M;]=27".
> Z MeaM[5]
MjEM
By averaging over (pk, sk), the weak +'-spreadness of PKE’ is also obtained. O

22

4 IND-CCA Secure KEM from ACW(C,

4.1 FO Transform with Re-encryption

One can apply the Fujisaki-Okamoto transformation FO~ to the IND-CPA secure PKE’, as shown in Fig-
ure |5, to obtain an IND-CCA secure KEM. Figure (12| shows the resultant KEM := FOL[PKE' H] =
(Gen, Encap, Decap), where H is a hash function (modeled as a random oracle). Regarding the correctness
error of KEM, KEM preserves the worst-case correctness error of PKE’, as Decap works correctly as long
as Dec’ is performed correctly. Regarding the IND-CCA security of KEM, we can use the previous results
[20] and [15]], which are stated in Theorems .1 and {.2] respectively. By combining these results with
Theorems and we can achieve the IND-CCA security of KEM in the classical/quantum random
oracle model. In the case of the quantum random oracle model (QROM), we need to further use the fact that
IND-CPA security generically implies OW-CPA security.

Encap(pk) Decap(sk, c)
1 m+— M 1: m’ := Dec'(sk, c)
2: (R,K) :=H(m) - M’ = Dec(sk, c)
3: ¢:= End'(pk,m; R) -1’ = RRec(pk, M, c)
- 7 < 1R using the randomness R -m/ = Decode(M’, G(1"))
- M := Encode(m, G(r)) -if ' ¢ R orm/ =1, return L
- ¢ := Enc(pk, M;r) - return m’
4: return (K, c) 2. (R, K') :=H(m')
3. if m’ =1 or ¢ # Enc/(pk,m'; R'), return L
4: else, return K’

Figure 12: KEM = FO*[PKE/, H]

Theorem 4.1 (IND-CPA security of PKE’ ROV IND-CCA security of KEM [20]). Let PKE’ be a public-key
encryption scheme with a message space M. Let PKE’ has (worst-case) correctness error § and is (weakly)
~-spread. For any adversary .4 making at most gp decapsulation and gy hash queries, against the IND-CCA
security of KEM, there exists an adversary 3 against the IND-CPA security of PKE’ with

AdvINDCCA () < 2(AdVIND-CPA(B) ‘EJ\A—H’) 02 + qud,

where the running time of B is about that of \A.

Theorem 4.2 (OW-CPA security of PKE' S IND-CCA security of KEM [I5]). Let PKE' have (worst-
case) correctness error 6 and be (weakly) y-spread. For any quantum adversary .4, making at most gp
decapsulation and qy (quantum) hash queries against the IND-CCA security of KEM, there exists a quantum
adversary B against the OW-CPA security of PKE’ with

AdRRICA(A) <20/ AdVRIEPA(B) + 2402 V5 + 24q,/aa - 21,

where ¢ := 2(qn + ¢p) and Time(B) ~ Time(A) + O(gy - gp - Time(Enc) + ¢?).

23

4.2 FO-Equivalent Transform Without Re-encryption

The aforementioned FO requires the Decap algorithm to perform re-encryption to check if ciphertext ¢
is well-formed. Using m/ as the result of Dec’(sk, ¢), a new randomness R’ is obtained from H(m’), and
Enc’(pk, m’; R') is computed and compared with the (decrypted) ciphertext c. Even if m’ is the same as
m used in Encap, it does not guarantee that Enc’(pk, m’; R') = ¢ without computing R’ and performing
re-encryption. In other words, there could exist many other ciphertexts {¢;} (including c as one of them), all
of which are decrypted into the same m’ but generated with distinct randomness {R’}. In FO* (and other
FO transformations), there is still no way to find the same ¢ (honestly) generated in Encap other than by
comparing Enc’(pk, m’; R") and c. In the context of chosen-ciphertext attacks (using the inequality such as
¢ # Enc/(pk,m'; R)), it is well known that decapsulation queries using {c;} can leak information on sk,
particularly in lattice-based encryption schemes.

However, we demonstrate that FO based on ACWC, can eliminate the need for ciphertext comparison
¢ = Enc/(pk,m’; R) in Decap, and instead replace it with a simpler and more efficient comparison r’ = r”.
To do this, we first change Decap of Figure [12] into that of Figure which are conceptually identical
to each other. Rather, the change has the effect of preventing reaction attacks that can occur by returning
distinct output errors of Decap. Next, we suggest the new FO conversion based on ACWCs, denoted as
@l, as shown in Figure In FO ™, 7/ and 7" are values generated during the execution of Decap, where
' is the output of RRec(pk, M’, ¢) and 7" is computed from the randomness R’ of H(m'). The only change
compared to FO* in Figure [T3]is the boxed area, while the remaining parts remain the same. By proving
that the two conditions ' ¢ R and ¢ = Enc'(pk,m’; R') are equivalent to the equality v’ = r” (where
" < 1p with the randomness R’), we can show that both FO* and FO " work identically and thus achieve
the same level of IND-CCA security.

Decap(sk, c) Decap(sk, c)
1: M' = Dec(sk,c) 1: M' = Dec(sk,c)
2: " = RRec(pk, M, ¢) 2: " = RRec(pk, M, ¢)
3: m' = Decode(M’, G(r")) 3: m' = Decode(M’, G(r"))
4 (R,K'):=H(m) 4: (R',K') :=H(m')
5. ifm’ # 1 and|7’ € R and ¢ = Enc’(pk, m’; R) 5: ’r” + 1 with the randomness R"
6 retum K o it 2L and[s =1
7: else 7. return K’
8: return L 8- else
9: return L
Figure 13: Modified KEM = FO[PKE’, H] Figure 14: KEM' = @L[PKE’7 H]

4.2.1 Security Proof in the ROM

Theorem 4.3. Let KEM be a key encapsulation mechanism defined in Figure and let KEM’ be another
mechanism defined in Figure[14] both constructed based on PKE. Assume that PKE is randomness recover-
able and randomness unique, has an average-case correctness error ¢, and ensures that outputs of Dec always
belong to M and that SOTP is rigid. For any adversary .4 making at most gp decapsulation and gy hash
queries against the IND-CCA security of KEM’, there exists an adversary B against the IND-CCA security

24

of KEM with

Advign " (A) < Adviggn“*(B) + (an + qp)d',

where ' = 0 + [|[vr| - (1 + /(In | M| = In[lyr[)/2), and [[¢r | == /32, dr(r)2.

Proof. The security proof begins by analyzing hybrid games with a fixed key pair (pk, sk). A detailed
explanation of the security proof is provided below.

GAME Gy. G is the original IND-CCA game against KEM' with a fixed key pair (pk, sk).

GAME G1. In contrast to Gy, the Decap oracle in G is modified. Instead of returning K’ when m’ # 1
and ' = r”, K’ is now returned if m’ #.1, 7" € R, and ¢ = ¢/. Note that G is the original IND-CCA game
against KEM with a fixed key pair (pk, sk). For ease of analysis, for each sk and m € M, we define

Risa(sk, m) = {R € R : Dec(sk, Enc(pk, M; 7)) # M,

where r = Sample(R; R) and M = Encode(m, G(r))}
and Rygoq(sk,m) = R'\ Ry,q(sk,m). Additionally, we define d(sk,m) := |R'vaa(sk, m)|/|R'| and
Osk = maX;,enm 0(sk, m).

Assuming (R, K') = H(m) € R] ,,,(sk,m) x K for all m that are queried to H, we now show that the
changes in G; do not impact adversary .4, as the conditions actually imply each other.

Assume that m’ #1 and ' = r” hold for a ciphertext ¢ in the Decap oracle. Given the rigidity
of the SOTP, the condition m’ = Decode(M’, G(r")) #.L implies M’ = Encode(m’, G(r")), and thus
M’ = Encode(m/, G(r"")). Moreover, since 7’ = " and r” is sampled from)% using the randomness R/, it
follows that ' € R. Additionally, since M’ = Dec(sk, ¢) is within M and " = RRec(pk, M, ¢) is also in
R, the RR property of the PKE ensures that ¢ = Enc(pk, M’;r") = Enc(pk, Encode(m/, G(r")); ") = (.

Conversely, assume that m’ # 1, v’ € R, and ¢ = ¢’ hold in the Decap oracle. Since M’ = Dec(sk, c) is
within M and 7" = RRec(pk, M, ¢) is in R, the RR property of the PKE ensures that ¢ = Enc(pk, M';1").
Additionally, since ¢ = ¢ = Enc(pk, Encode(m’, G(r"));r") where " is sampled using R’ from the
pair (R, K') = H(m/), by the definition of H, it follows that M’ = Dec(sk,c) = Encode(m’, G(r")).
Consequently, this implies that ¢ = Enc(pk, M';r"). Since ¢ = Enc(pk, M';r") = Enc(pk, M';1"), the
randomness uniqueness of PKE implies 7' = r”.

GAMES Go-G Decap(sk, c)

.G+~ (R—=U) 1: M' = Dec(sk,c)

22 He (M = R ' xK) 2: ' = RRec(pk, M’, c)

3: (pk, sk) + Gen(1?) 3: m' = Decode(M’, G(r"))

4: (Ko, c*) < Encap(pk) 4: (R, K') :=H(m/)

5: K1+ K 5: r" < 1) with the randomness R’

6: b+« {0,1} 6: ¢ = Enc(pk, Encode(m/, G(r")); r") Gy

7: b < AGHDecap (pL o) 7. ifm’ #L and v’ = 1" NIGo

8: return [b="V] 8: ifm' #L andr’ € Randc = ¢ Gy
9: return K’
10: else, return L

Figure 15: GAMES Gy-G| for the proof of Theorem[4.3]

25

Since these two conditions imply each other, assuming that (R, K') = H(m) belongs to R}, ;(sk, m) X
K for all m that are queried to H, by Lemma 2.§] the following holds:

[Pr(Gg! = 1] = Pr[Gf' = 1]| < (g0 + D)ok)
Therefore, by the triangular inequality, the following holds:
Advigiay Sr(A) = |PriGgt = 1] - 1/2]
<|Pr[Gg' = 1] - Pr[G{' = 1]| + [Pr[Gf = 1] — 1/2|
SAdeEDM?s%A(A) + (g1 + 4p)dsk-

By taking the expectation over (pk, sk) < Gen(1*) and applying Corollary we obtain the desired
bound. [

4.2.2 Security Proof in the QROM

Theorem 4.4. Let KEM be the key encapsulation mechanism defined in Figure and let KEM' be the
mechanism defined in Figure [14] both constructed from the same public-key encryption scheme PKE. As-
sume that PKE is randomness recoverable and randomness unique, has average-case correctness error 4,
and ensures that the outputs of Dec always lie in M and that SOTP is rigid. For any quantum adversary A
making at most gp decapsulation queries and gy (quantum) hash queries against the IND-CCA security of
KEM', there exists a quantum adversary B against the IND-CCA security of KEM with

AdvIRINEA(A) < AdVRIVCEA(B) + 4+ (gu + qp) V&,

where 0 = 6 + [[¢r| - (1 + /(In [M'] — In[[Yr[])/2), and [[Yr| = /32, dr(r)>.

Proof. The security proof proceeds via a sequence of hybrid games, analyzed for a fixed key pair (pk, sk).
A detailed explanation of the security proof is provided below.

GAME Gj. G is the original IND-CCA game against KEM' with a fixed key pair (pk, sk).

GAME G;. Unlike G, G uses the function H’ instead of H. The function H’ takes a message m as input
and selects randomness from the set R/ good> Which consists of all randomness that do not cause decryption
errors when encrypting m under the public key pk. Specifically, for a fixed secret key sk and m € M, we
define

Riaa(sk,m) := {R € R’ : Dec(sk, Enc(pk, M;r)) # M,
where r = Sample(R; R) and M = Encode(m, G(r))}

and Ryoq(sk,m) := R’ \ Ry,q(sk, m). The function H’ is defined as a random function such that H'(m) is
sampled uniformly from R’ good(sk, m) x K. We denote by Qs the set of all possible choices of H'. Finally,
we define §(sk, m) := |R'vada(sk, m)|/|R'| and dg := maxer (sk, m).

Note that distinguishing between Gy and G is equivalent to distinguishing between H from H’. In
particular, we construct an adversary B that distinguishes H from H’. This adversary uses the accessible
oracle H (either H or H’), simulates the view of A, and outputs the same results as in games G and G.
When H = H, BH(sk) perfectly simulates Gy, so Pr[l « BH(sk)] = Pr[Gg' = 1]. Similarly, when

H=H,BH (sk) simulates Gy, yielding Pr[1 <— B (sk)] = Pr[G{* = 1]. Therefore,
| Pr[Gql = 1] — Pr[Gf* = 1]| = | Pr[1 « B (sk)] — Pr[1 « B (sk)]|. (8)

26

GAMES G(-Gj3 Decap(sk, c)
. G+~ (R—=U) 1: M' = Dec(sk,c)
2H+ (M —- R xK) IIGy, G3 2: ' = RRec(pk, M, c)
3: H « QH/ //Gl—GQ 3 m = Decode(M’, G(T‘/))

4: (pk, sk) < Gen(1?) 4 (R,K') :=H(m')
5. (Ko, c*) < Encap(pk) 5: 1" «+ 1 with the randomness R’
6: K1+ K 6: ¢ = Enc(pk, Encode(m/, G(r")); ") 1Go-G3
7. b« {0,1} 7. if m' #1L and " =" 11Go-G4
8: b« AGHDecp(pL o Ky) /IGy, Gz 8 ifm' #Landr’ € Randc= ¢ 11Go-G3
9: b« AGH'Decap(pL % K}) //Gy-Gy 9 return K

10: return [b = V'] 10: else, return |

Figure 16: GAMES G(-G?3 for the proof of Theorem 4.4]

CN(sk) H(m)
1: Select 2gy-wise functions f; and f : if N(m) =0
2: b+ BH(sk) R R g00d(sk, m) with the randomness f; ()
3: return b . else

: K + K with randomness f2(m)

1
2
3
4 R < R'vaa(sk, m) with the randomness f1(m)
5
6: return (R, K)

Figure 17: CN(sk) for the proof of Theorem

Next, we demonstrate that any adversary B distinguishing H from H’ can be converted into an adversary
C distinguishing N; from Ng. Specifically, N; is a function where N;(m) is sampled from the Bernoulli
distribution By,), meaning Pr[Ny(m) = 1] = 6(sk,m) and Pr[N;(m) = 0] = 1 — §(sk,m). In
contrast, Ny is a constant function that always outputs 0. For any adversary B"(sk), we construct an
adversary CN(sk) as described in Figure Importantly, C simulates H=HwhenN = Njand H=H’
when N = Ny. Thus, Pr[l < CN'] = Pr[l < B"] and Pr[1 < CN2] = Pr[l < B"]. Therefore, by
Lemma2.10

‘Pr[l « BY(sk)] — Pr[l « BH'(sk)]‘)

Pr[l « CNi (sk)] — Pr[l CNQ(sk)]‘ <2 (qn + q)/Iep- (10)
Therefore, by combining Equations (8)—(10),
[Pr(Gg = 1] = Pr[G{' = 1]| <2+ (an + 1) Vb (1

GAME Gs. In contrast to G1, the Decap oracle in G is modified. Instead of returning K’ when m’ #.1
and ' = 7", K’ is now returned if m’ #.1, " € R, and ¢ = ¢/. We can show that this modification does not
affect the adversary A by proving that these two conditions actually imply each other.

27

Assume that m’ #.1 and ' = r” hold for a ciphertext ¢ in the Decap oracle. Given the rigidity of
the SOTP, the condition m’ = Decode(M’, G(r')) #L implies M’ = Encode(m’, G(r’)), and thus M’ =
Encode(m/, G(r")). Moreover, since ' = 7’ holds and 7" is sampled from vz using the randomness R/, it
follows that ' € R. Additionally, since M’ = Dec(sk, ¢) is within M and 7’ = RRec(pk, M, ¢) is also in
R, the RR property of the PKE ensures that ¢ = Enc(pk, M';r") = Enc(pk, Encode(m’, G(r")); ") = ¢'.

Conversely, assume that m’ 1,1’ € R, and ¢ = ¢ hold in the Decap oracle. Since M’ = Dec(sk, ¢) is
within M and 7 = RRec(pk, M, ¢) is in R, the RR property of the PKE ensures that ¢ = Enc(pk, M’;r’).
Additionally, since ¢ = ¢ = Enc(pk, Encode(m’, G(r"));r") where " is sampled using R’ from the
pair (R, K') = H(m/), by the definition of H, it follows that M’ = Dec(sk,c) = Encode(m’, G(r")).
Consequently, this implies that ¢ = Enc(pk, M';r"). Since ¢ = Enc(pk, M';r") = Enc(pk, M';r"), the
randomness uniqueness of PKE implies ' = .

Since these two conditions imply each other, the following holds:

|Pr[G' = 1] — Pr[G4' = 1]| = 0. (12)

GAME G3. Unlike G4, G3 uses the function H instead of H'. Note that G5 is the original IND-CCA game
against KEM with a fixed key pair (pk, sk). By the similar analysis between G and G, the following
holds:

[Pr(G3' = 1] = Pr[Gg' = 1] <2+ (gn + a0) Vb (13)
By combining Equations (TT)-(I3) with the triangle inequality, the following holds:
Advidr r (A) = [Pr(Ggl = 1] = 1/2]
<|Pr[Gg' = 1] - Pr[G{' = 1]| + [Pr[G{ = 1] — Pr[G%' = 1]|
+ |Pr[Gs' = 1] — Pr[G4! = 1]| + |Pr[Gy' = 1] — 1/2]
<Adviemai (A) + 4 - (gn + gp)V/ 6sk-

By taking the expectation over (pk, sk) <— Gen(1%) and applying corollary yields the required bound of
the theorem. O

28

S NTRU+

5.1 GenNTRU[¢7| (=PKE)

Figure (18| defines GenNTRU[¢]] relative to the distribution] over R,. Since GenNTRU[¢]'] must sat-
isfy both MR and RR for our ACWC; transformation, Figure [I8| also includes two auxiliary algorithms,
RRec and MRec. We observe that RRec(h, m, c) is required during ACWCs, because r must be recovered
from a ciphertext ¢ once the corresponding message m is obtained. The RR property ensures that this
randomness-recovery process works well, because for a ciphertext ¢ = Enc(h, m,r) = hr + m, we have
RRec(h,m,c) = (¢ — m)h~! = r € R. On the other hand, MRec(h, r, c) is used only in the IND-
CPA security proof of the ACWCs-transformed scheme. The security analysis requires that for a challenge
ciphertext ¢* = Enc(h,m*,r*) = hr* + m*, the algorithm MRec(h, r*, c*) returns the corresponding
message m”* if the queried randomness r* was used for c*. The MR property guarantees that once r* is
given, MRec(h,r*,c¢*) = ¢* — hr* = m* € M.

Gen(1) Enc(h, m < ¢} 1 + 97})
1: repeat I: return ¢ = hr +m
2 {7 Dec(f,)
. — af/ —
3 f*?_’f +1) 1: return m = (cf mod ¢) mod 3
4: until f is invertible in R,
RRec(h, m, c)

5: repeat —_—
6 g Up I: return r = (¢ — m)h~!
7: until g is invertible in R, MRec(h, r,c)
8: h =3gf! I: return m =c — hr
9: return (pk,sk)= (h,f)

Figure 18: GenNTRU[¢]] with average-case correctness error

5.1.1 Security Proofs

Theorem 5.1 (OW-CPA security of GenNTRU[%7]). For any adversary A, there exist adversaries B and C
such that
AVONCPA - (A) < AWNTRY (B) + AVRLYE (C).

Proof. We complete our proof through a sequence of games G to G1. Let A be the adversary against the
OW-CPA security experiment.

GAME Gy. In Gy, we have the original OW-CPA game with GenNTRU[)]']. By the definition of the
advantage function of the adversary .4 against the OW-CPA game, we have

AdVSXXNCTPQUW](A) = Pr(Gg! = 1.

GAME G1. In G, the public key h in Gen is replaced by h «<— R,. Therefore, distinguishing G'1 from G| is
equivalent to solving the NTRU,, ; y» problem. More precisely, there exists an adversary 5 with the same
running time as .4 such that

|Pr[Gg' = 1] = PrG{ = 1]| < Adv)y ;¥ (B).

29

Since h is now uniformly random in R, Gy is equivalent to solving an RLWE,, ; 4» problem. Therefore,

PriGi' = 1] = Advjio (5 (C).

Combining all the probabilities completes the proof. O

5.1.2 Average-Case Correctness Error

We analyze the average-case correctness error J relative to the distribution Yoy = g = 97 using the
template provided in [31]]. We can expand cf in the decryption algorithm as follows:

cf = (hr + m)f = (3gf 'r + m)(3f' + 1) = 3(gr + mf’) + m.

For a polynomial p in Ry, let p; be the i-th coefficient of p, and let |p;| denote the absolute value of p;.
Then, ((cf); mod ¢) mod 3 = m; if the following inequality holds:

qg—1
2 bl

where all coefficients of each polynomial are distributed according to 1)7". Let €; be

|3(gr + mf’) + m|, <

-1
¢; = Pr ||3(gr + mf’) —|—m‘i < 2} .

Assuming that each coefficient is independent, we have

n—1
Pr [Dec(sk, Enc(pk,m)) #m|=1— H €. (14)
=0

Because the coefficients of m have size at most one,

[-1

¢ = Pr ||3(gr + mf’) + m|z < 2]
[/ g—1

> Pr ‘3(gr—|—mf)‘i—|—|m|i§72]

[-1
> Pr ||3(gr + mf)], + 1 < qQ]

6 3

=Pr ‘gr—kmf"i < (1—3} =€

Therefore,

n n

Pr [Dec(sk, Enc(pk,m)) #m] =1 — H 6 <1— He; = 4.
i=0 i=0

Now, we analyze €, = Pr “gr + mf’|, < %} . To achieve this, we analyze the distribution of gr+mf’.

Following the analysis in [31], we observe that for i € [n/2,n], the degree-i coefficient of gr + mf’ is the
sum of n independent random variables:

c=ba+V(a+ad)e{0,41,+2 43}, wherea,b,a' b < ;. (15)

30

+3 +2 +1 0 +2 | +1 0
17128 | 1/32 | 23/128 | 9/16 1/64 | 3/16 | 19/32

Table 3: Probability distribution of ¢ = ab+b/(a+a’) Table 4: Probability distribution of ¢ = ab + a't/

Additionally, for i € [0, n/2 — 1], the degree-i coefficient of gr + mf’ is the sum of n — 2i random variables
c (as in Equation), and 2i independent random variables ¢’ of the form:

d =ba+bd €{0,£1,+2} where a,b,a’, b’ < 9. (16)

Computing the probability distribution of this sum can be done via convolution (i.e., polynomial multiplica-
tion). Define the polynomial:

S g pig X9 = (S35 0,X9) fori = [n/2,n— 1],
\ n—2i 2
S g X = (X3, 0,X7) (304X fori = [0,n/2 1],

where 6; = Pr[c = j] (see Table and ¢; = Pr[c’ = j] (see Table. Let p; ; be the probability that the
degree-i coefficient of gr + mf’ is j. Then ! can be computed as:

pi(X) = (17)

3n .
e = 22 (q+3)/6pi7j fori € [n/27n_1]7
)2 23" (a6 Pig fori€[0,n/2 1],

using the symmetry p; ; = p; —;. Substituting €, into Equation yields the average-case correctness error
0 of GenNTRU[97].

5.1.3 Injectivity

The injectivity of GenNTRU[#]] can be easily shown as follows: if there exists an adversary that can yield
two inputs (mj,r) and (mg,rs) such that Enc(h,m;;r;) = Enc(h, ms;rs), the equality indicates that
(ry —ro)h + (m; — my) = 0, where r1 — ro and m; — my still have small coefficients of length, at most
24/n. For a lattice set

Lg = {(v,w) € Ryx R, :hv +w =0 (in R,)},

(r; —re,m; — my) becomes an approximate shortest vector in E&. Thus, if the injectivity is broken against
GenNTRU[¢1], we can solve the approximate shortest vector problem (SVP) (of length at most 21/n) over
Ly . Tt is well-known [16] that the approximate SVP over Lg- is at least as hard as the NTRU,, 4 yn problem
(defined above). Hence, if the NTRU,, ;,» assumption holds, then the injectivity of GenNTRU[¢7] also
holds.

5.1.4 Spreadness
Lemma 5.2 (Spreadness). GenNTRU[]] is n-spread.

Proof. For a fixed message m and ciphertext c, there exists at most one r such that ¢ = Enc(h, m;r).
Suppose there exist ry and ry such that ¢ = Enc(h, m;r;) = Enc(h, m;r3). Based on this assumption,

31

hr; + m = hry + m holds. By subtracting m and multiplying h—! on both sides of the equation, we obtain
r = r’. Therefore, there exists at most one r such that ¢ = Enc(h, m;r).

For fixed m, to maximize Pr[Enc(h, m;r) = c], we need to choose ¢ such that ¢ = Enc(h, m;r) for
r = 0. Since there exists only one r such that c = Enc(h, m;r), we have Pr[Enc(h,m;r) = ¢] = 27".
Since this holds for any (pk, sk) «— Gen(1*) and m € M, GenNTRU[}] is n-spread. O

5.1.5 Randomness-Recoverability

Lemma 5.3. GenNTRU[#]'] is randomness recoverable.

Proof. Suppose r = RRec(h,m,c) = (¢c —m)h™! € R = {-1,0,1} form € M = {-1,0,1}
and ¢ € C = R,. Then, multiplying h and then adding m to both sides of r = (¢ — m)h~! leads to
¢ =hr +m = Enc(h, m;r). O

5.1.6 Message-Recoverability
Lemma 5.4. GenNTRU[¢] is AC-MR.

Proof. Suppose m = MRec(h,r,c) = ¢ —hr ¢ M = {-1,0,1}" forr €¢ R = {-1,0,1}" and
c € C = R,. Then, adding hr to both sides of m = ¢ — hr leads to ¢ = hr + m = Enc(h, m;r). O

Lemma 5.5. GenNTRU[¢]] is VC-MR.

Proof. Suppose that c = Enc(h,m;r) = hr + m withbm € M ={-1,0,1}" andr € R = {-1,0,1}".
When we apply MRec to (h, r, c), we obtain MRec(h,r,c) = ¢ — hr = (hr + m) — hr = m. Therefore,
whenever c is a valid ciphertext of m under randomness r, the algorithm MRec recovers m exactly, as
required by VC-MR. Hence GenNTRU[¢]] is VC-MR. O

5.1.7 Randomness-Uniqueness

Lemma 5.6. GenNTRU[#]] is randomness unique.

Proof. Suppose ¢ = Enc(h,m;r) = hr + m and ¢’ = Enc(h, m;r’) = hr’ 4+ m satisfy ¢ = ¢’. Then,
hr+m = hr’+m. Since h is invertible, we can conclude that r = r’ by subtracting m and then multiplying
both sides of the equation by h. O

5.2 CPA-NTRU+ (=PKE")
5.2.1 Instantiation of SOTP

We introduce an instantiation of SOTP = (Encode, Decode), where Encode : M’ x U — M and Decode :
M xU — M, with M’ = {0,1}", U = {0,1}**, and M = {—1,0,1}", along with distributions
ty = U and Ypq = 17" as shown in Figure which is used for ACWC,. We note that, following [28]],
the values of y 4+ uo generated by Decode should be checked to determine whether they are O or 1.

Message-Hiding and Rigidity Properties of SOTP. It is easily shown that SOTP is message-hiding
because of the one-time pad property, particularly for part = & u;. That is, unless u; is known, the message
x € M’ is unconditionally hidden from y € M. Similarly, = ® u; becomes uniformly random over {0, 1},
regardless of the message distribution 1,4, and thus the resulting y follows ¢7. In addition, we can easily
check that SOTP is perfectly rigid as long as y 4+ us € {0,1}".

32

Encode(x € M, u + U?") Decode(y € M,u € U?")
1w = (ug,ug) € {0,1}" x {0,1}" u = (ug,uz) € {0,1}" x {0,1}"
2 y=(x®u)—ug € {-1,01}" ify +us ¢ {0,1}", return L
3: return y x=(y+u2) ®uy € {0,1}"
return

N

Figure 19: SOTP instantiation for NTRU+

5.2.2 CPA-NTRU+ (=PKE)

We obtain CPA-NTRU+ := ACWC; [GenNTRU[}],SOTP, G| by applying ACWC; from Section |3| to
GenNTRU[#}]. Because the underlying GenNTRU[¢]] provides injectivity, AC-MR, VC-MR, and RR
properties, Theorems and provide us with the IND-CPA security of the resulting CPA-NTRU+
in the classical and quantum random oracle models, respectively. Regarding the correctness error, Theo-
rem [3.2] shows that the worst-case correctness error of CPA-NTRU+ and the average-case correctness error
of GenNTRU[y7] differ by the amount of A = |9z || - (1 4+ /(In|M'| — In||[¢z]])/2), where % and M’

are specified by ¥ and {0, 1}", respectively. For instance, when n = 768, we obtain about A = 271083,
Gen/(1%) Enc’(pk,m € {0,1}"; R « {0,1}*")
1: (pk, sk) := GenNTRU[wﬁ.Gen(l)‘) 1: r < 97 using the randomness R
- repeat 2: m = Encode(m, G(r))
-f g p 3: ¢ = GenNTRU[¢]'].Enc(pk, m;r)
Sf=3f+1 -c=hr+m
- until f is invertible in R, 4: return c
- repeat Dec/(sk, c)
-8 Yf 1: m = GenNTRU[¢}"]. Dec(sk, c)
- until g is invertible in R, -m = (cf mod ¢) mod 3
- (pk, sk) = (h = 3gf~! mod ¢, f) 2: r = RRec(pk, c,m)
2: return (pk, sk) -r=(c—m)h!
3: m = Decode(m, G(r))
4 ifm=_Lorr ¢ {-1,0,1}", return L
5: return m

Figure 20: CPA-NTRU+

Spr@iless Properties of CPA-NTRU+. To achieve IND-CCA security of the KEM and PKE via FO"
and FOpyg, we need to show the spreadness of CPA-NTRU+-. The spreadness can be easily obtained by
combining Lemma [3.8| with Lemmal[5.2]

5.3 NTRU+

Finally, we achieve IND-CCA secure KEM by plying FO" to CPA-NTRU+. We denote such KEM by

NTRU+ := mL[CPA—NTRU—P7 H]. Figure |21/ shows the resultant NTRU+-, which is the basis of our
implementation in the next section. By combining Theorems {1} .2 and Theorem [4.3] we can achieve

33

IND-CCA security of NTRU+. As for the correctness error, NTRU+ preserves the worst-case correctness

error of the underlying CPA-NTRU+.

1
2
3
4:
5
6
7

8:
Encap(pk)
1:

AN AN S

Gen (1)

: repeat

', g« 7
f=3f+1
until f is invertible in 12,

: repeat

g <+ Y7

. until g is invertible in R,

return (pk, sk) = (h = 3gf~1 f)

m « {0,1}"

(R, K) = H(m)

r < 17 using the randomness 12
m = Encode(m, G(r))
c=hr+m

return (c, K)

Decap(sk, c)

1: m = (cf mod ¢) mod 3
22r=(c—m)h!

3: m = Decode(m, G(r))
4 (R',K)=H(m)

5:
6
7
8
9

r’ < 17 using the randomness R’

cifm=_Lorr#1

return L

. else

return K

Figure 21: NTRU+

34

6 Algorithm Specification

6.1 Auxiliary Functions

Bit Ordering Functions. To convert between byte arrays and bit arrays, we introduce the BytesToBits
and BitsToBytes functions in Algorithms |1{and 2| These functions form an inverse pair, so applying one
after the other recovers the original input. They are used later in Algorithms 3] @] and [3]

Algorithm 1: BytesToBits
Require: Byte array B = (bo, b1, -+ ,b,/8-1) € B3
Ensure: Bitarray f = (fo, -, fn—1) € {0,1}"
1: for i fromOton/8 —1do

2 t=1b

3: for j from O to 7 do

4 Jsiri =t&1

5: t=t>1

6: return f = (fo, -+, fn-1)

Algorithm 2: BitsToBytes
Require: Bitarray f = (fo,..., fn-1) € {0,1}"
Ensure: Byte array B = (bo, b1,...,bn/8-1) € B"/8
1: for i from0ton/8 —1do

2: bz‘ =0

3: for j from O to 7 do

4: b; = b; + f82’+j x 27
s: return (bo,...,b,/5-1)

Sampling from a Binomial Distribution. To sample the coefficients of a polynomial from the centered
binomial distribution with = 1, we introduce the CBD; function in Algorithm [3] To determine the bit
ordering of the input bytes, this function uses the Bytes ToBits function defined in Algorithm

Algorithm 3: CBD;

Require: Byte array B = (bo, b1, , by /a—1)

Ensure: Polynomial f € R,
1: (Bo,+ s Bn—1) := BytesToBits((bo, - - , by /8-1))
2 (Bny- -+ 5 Ban—1) = BytesToBits((by, /g, ; bpja—1))
3: for ¢ fromOton — 1 do
4 fi=Bi— Bitn
5. return f = fo + fio + fox? + -+ foo1z" !

Semi-generalized One-Time Pad (SOTP). We define SOTP = (Encode, Decode) in Algorithms[4]and|[3]
respectively. The Encode function is identical to CBDq, except that it XORs the first half of the random
bytes with the message before applying the centered binomial sampling. Accordingly, Encode also uses the
BytesToBits (Algorithm[I), as in CBD;. The corresponding Decode function, given in Algorithm [5] acts as
the inverse of Encode and uses BitsToBytes (Algorithm [2) to recover the original byte array.

35

Algorithm 4: Encode
Require: Message Byte array m = (mq, mq, -+ ,m31)
Require: Byte array B = (b, b1, , by /4—1)
Ensure: Polynomial f € R,
1: (Bo, -+, Bn—1) := BytesToBits((bo, - ,bp/8-1))
2 (B, Pan—1) 1= BytesToBits((by/g,* ;bpja—1))
3: (mg,- - ,mp—1) := BytesToBits(m)
4: for i fromOton — 1 do
5
6

fi = (m; & Bi) — Bitn
: return f = fo+ fiz + fox® + -+ frg2™ !

Algorithm 5: Decode
Require: Polynomial f € R,
Require: Byte array B = (b, b1, by /4—1)
Ensure: Message Byte array m = (mg, my,--- ,msq)
I: (50, e ,Bn_l) = BytesToBits((bO, AR ,bn/gfl))

2 (B, Pan—1) 1= BytesToBits((by /g, ;bpja—1))
3: for i fromOton — 1 do
4 if fi + Bisn ¢ {0,1}, return L ; //Refer to line 8 in Algorithm
50 my = ((fi + Birn) & 1) © 5
m = BitsToBytes((mq, -+ ,mp_1))

6: return m

Encoding and Decoding. To convert a polynomial in R, to and from its 3n/2-byte representation, we in-
troduce the Encode, and Decode, functions in Algorithms[6|and[7] The Encode, function assumes that each
coefficient of the input polynomial lies in {0, ..., ¢ — 1} before packing it into the byte array. The Decode,
function performs the inverse transformation by recovering the coefficients from the byte array. Together,
the two functions form an inverse pair, so applying one after the other recovers the original polynomial.

Algorithm 6: Encode,
Require: Polynomial f = (fo,..., fn—1) € Ry, witheach f; € {0,...,¢ — 1}
Ensure: Byte array B = (bo, - - -, b3;/2-1)
1: for i from0Oton/2 —1do
20 to = fo
30t = fain
4 bg; = to
50 bz = (to>8) + (t1 < 4)
6
7

b3it2 = t1 >4
return B

36

Algorithm 7: Decode,
Require: Byte array B = (bo, - - - , b3, /2-1)
Ensure: Polynomial f = (fo,..., fn—1) € Ry, witheach f; € {0,...,¢ — 1}
1: for i from0Oton/2 —1do
2: to = bs;

30 t1 = b3iy1

4: to = b3iyo

50 fai =to | ((t1 & 0x0f) < 8)

6 foiv1 = ((tl > 4) & OXOf) | (tg < 4)
7: return f

Symmetric Primitives. The scheme uses three distinct hash functions, denoted by F, G, and H. Each
function is instantiated with SHAKE-256, as shown in Algorithms[8] [0 and[I0] We also use SHAKE-256 as
an extendable-output function (XOF) when sampling the polynomials f’ and g’ in Algorithm

Algorithm 8: F
Require: Byte array m = (mo, m1,...,M3,/2-1)
Ensure: Byte array B = (bo, b1, . ..,b31)
1: (bo, ey b31) = SHAKE-256(OXOO H m)
2: return (bo, . ,bgl)

Algorithm 9: G
Require: Byte array m = (mq,m1, ..., My, /3-1)
Ensure: Byte array B = (bo, b1, ..., bp/4-1)
L (boy- -+ s bpya_1) := SHAKE-256(0x01 || m, n/4)
2: return (bo, ..., bp/4-1)

Algorithm 10: H
Require: Byte array m = (mq, M1, . .., My, /3431)
Ensure: Byte array B = (bo, b1, .- -, by 4431)
1: (b, - - by aq31) = SHAKE-256(0x02 || m, n/4 + 32)
2: return (bo, ..., by/4131)

37

6.2 Number Theoretic Transform

Polynomial Rings and Number Theoretic Transform Throughout this specification, we consider the
quotient rings R = Z[z]/(®3,(x)) and R, = Z,[x]/(®3,(2)), where ®3,(2) = 2™ — 2™/ 4 1 denotes
the 3n-th cyclotomic polynomial of degree n = 297'3% for a,b € N U {0}. To optimize polynomial
multiplication, the Number Theoretic Transform (NTT) is used to establish a ring isomorphism based on the
Generalized Chinese Remainder Theorem (GCRT):

n/d—1
Ry [[Zglal/(a® — o=y, d e {3,4}.
1=0

Here, (is a primitive /-th root of unity modulo ¢ with ¢ = 3n/d, where the values (d, ¢, ¢) are defined in
Table[5] and the array index is defined in Figure[22] This decomposition ensures that high-degree multipli-
cation is reduced to n/d independent multiplications in smaller component rings. Under this decomposition,
the forward transform NTT can be written as

f' _ NTT(f) _ (f mod (.’Ed _ Cindex[O])7 ..., f mod (xd _ Cindex[n/dfl})>
= (oo Ja) Il (oo fua)
~—————
Zq [I}/<Id,<index[o]> Zq [ﬂ/@d,cindex[n/d—lb

and the inverse transform NTT ! is defined as its inverse.
Concretely, NTT is performed through three different sequential stages of butterfly layers, with iterations
determined by the parameter set in Table [5}

1. Initial Radix-2 Layer: This layer decomposes the initial cyclotomic ring 1, into two sub-rings:
Ry = Zyla] /(2" — 2™ + 1) = Zy[a] /(2"? = (/) x Zyla] /("2 = (PF).
This factorization provides the initial split for the recursive transform [31]].

2. Standard Radix-3 Layer: This layer decomposes the quotient ring as
2 .
Zylel/(@*™ — o) = [Zqla) /{a™ — awd),
§=0

where w = (/3 is a primitive third root of unity (see [18] or Appendix .

3. Standard Radix-2 Layer: This layer decomposes the quotient ring as
Lqlz) /(2™ — ¢?) 2 Lyla] /(™ —) x Zglz] /(2™ +).

This decomposition can be equivalently written as Z,[2]/ (2™ — 1) x Z,[x]/(z™ — 1¢*/?) because
¢Y? = —1 (mod q). Since £/2 is even, this bisection is well-defined provided that v is a quadratic
residue. For the chosen parameter sets, this bisection continues until m = d € {3,4}. Note that
the Radix-3 Layer is executed prior to the Radix-2 Layer to avoid the need for an additional pre-
computation table for the base multiplication.

38

By combining these sequential layers, the initial ring is decomposed into a collection of smaller com-
ponent rings, ordered according to the index array. To make this construction explicit, we describe how
the index array is generated by following the sequence of butterfly layers defined above. Starting from
the initial root values, the corresponding layer operations are applied recursively according to the prescribed
schedule in Table 5] with each layer expanding all current leaf nodes before proceeding to the next layer.

« Initial Radix-2 Layer: Initializes two independent trees with the root values {¢/6,5(/6}.

» Standard Radix-3 Layer: For each application of the radix-3 layer, every current leaf node with
value 9 is expanded into three ordered child nodes {/3, (v + £)/3, (v + 2¢)/3}.

» Standard Radix-2 Layer: For each application of the radix-2 layer, every current leaf node with
value 1 is expanded into two ordered child nodes {v'/2, (¢ + £)/2}.

Multiplication in the NTT Domain. After transforming a polynomial in R, into its components in the
product rings, multiplication is performed independently in each ring Z,[z]/(z¢—(). Leta(x) = E?;é
and b(z) = Z?;é bjz? be polynomials in this ring.

For d = 2, the product ¢(x) = a(x)b(x) is

]
a;T

c(x) = a(z)b(z) = (aobo + a1b1() + (apbr + arby)z,

eI

For d = 3, the product ¢(x) = a(z)b(x) becomes:

which can be written in matrix form as

C(IL') = G(Cli)b(iﬁ) = (aobo + (CLle + ale)C) + (a1b0 + apby + agbgox + (a2b0 +a1by + a0b2)$2,

which corresponds to the matrix representation

co ap axC ai1C| [bo
ci| =|ar ao al| b1
& ay a1 ap | [b2

For d = 4, the product ¢(x) = a(x)b(x) is

c(a:) = a(x)b(x) :(aobo + (albg + asby + agbl)C) + (a0b1 + a1bg + (a263 + agbg)C)l‘
+ (apbz + a1by + azbo + a3b3C)x2 + (apbs + a1ba + azby + agbo):c?’,

with the corresponding matrix form

co ap asz¢ a2¢ ai1C| [bo
ci| a1 ap a3¢ axC| |b1
2| |az a1 ap a3C| |ba
c3 a3 az ar ap| [b3

39

Inversion in the NTT Domain. In the NTT domain, inversion is performed independently in each com-

ponent ring Z,[z]/(z¢ —), analogous to multiplication. Let a(x) = Z?;é a;jx’ and write its inverse as

b) = S bya.
For d = 2, the inverse b(z) is obtained from

86 2 Heaels 2l
bil |aq ap 0 _ag—a%C —ai ao 0 _a%—a%C —ar|

For d = 3, we similarly compute

1 /

bo ag a¢ ai(1 .|
— i

bl = |a1 ag a2< 0l =d a|,
/
bo as a1 ag 0 sy

/ 2 / 2 / 2 / / /
where af, = af — Carag, a] = a5 — apay, a5 = aj — apaz, and d = apayy + ((ajab + aza)).

For d = 4, direct matrix inversion is less efficient. Following [35]], we reduce inversion in Zg[z]/(z*— ()

to inversion in Z4[2]/(2? — (), where z = 2%. We rewrite

a(x) = ap(z) + ai1(z)x, where ag(z) = agp + azz,a1(z) = a1 + asz.

For b(x) = bo(2) + b1 (2)z, the product becomes

c(x) = a(z)b(x) = (ao(2) + a1(2)z) - (bo(2) + b1 (2)x)
= do(2)bo(2) + (ao(2)b1(2) + @1 (2)bo(2))z + a1(2)by (2)a?
= (ao(2)bo(2) + a1(2)b1(2)2) + (ao(2)b1(2) + a1 (2)bo(2)),

To find the inverse b(x) = by(z) + b1(z)z, we use:

R i I = e Rl

O | ezt -0

@3(2) — a(2)z [—amz

The inverse of a2(z) — a}(z)z in Z,[2]/(2* — ¢) can be computed using the d = 2 case, and once the
inversion is completed in that ring, the final result is obtained by substituting z = 2.

In all cases, the multiplicative inverse modulo ¢ must be computed. To reduce the risk of side-channel
leakage, we use Fermat’s Little Theorem instead of the extended Euclidean algorithm: if a # 0 and is co-
prime with g, then a9~! = 1 (mod ¢), and thus the inverse of a can be obtained as a9~2 mod ¢. Note that

a = 0 is never invertible in Z,, and such values are excluded by construction.

40

bi

Figure 22: Index for the NTT

41

Initial Standard | Standard d ¢ ,
" 4 Radix-2 | Radix-3 | Radix-2
768 3457 1 1 5 4 22 576
864 3457 1 2 4 9 864
1152 3457 1 4 4 864
Table 5: Layer configurations for the NTT
* NTRU-+768
index[192] = {

1, 289, 145, 433, 73, 361, 217, 505, 37, 325, 181, 469, 109, 397, 253, 541,
19, 307, 163, 451, 91, 379, 235, 523, 55, 343, 199, 487, 127, 415, 271, 559,

7, 295, 151, 439, 79, 367, 223, 511, 43, 331, 187, 475, 115, 403, 259, 547,
25, 313, 169, 457, 97, 385, 241, 529, 61, 349, 205, 493, 133, 421, 277, 565,
13, 301, 157, 445, 85, 373, 229, 517, 49, 337, 193, 481, 121, 409, 265, 553,
31, 319, 175, 463, 103, 391, 247, 535, 67, 355, 211, 499, 139, 427, 283, 571,

5, 293, 149, 437, 177, 365, 221, 509, 41, 329, 185, 473, 113, 401, 257, 545,
23, 311, 167, 455, 95, 383, 239, 527, 59, 347, 203, 491, 131, 419, 275, 563,
11, 299, 155, 443, 83, 371, 227, 515, 47, 335, 191, 479, 119, 407, 263, 551,
29, 317, 173, 461, 101, 389, 245, 533, 65, 353, 209, 497, 137, 425, 281, 569,
17, 305, 161, 449, 89, 377, 233, 521, 53, 341, 197, 485, 125, 413, 269, 557,
35, 323, 179, 467, 107, 395, 251, 539, 71, 359, 215, 503, 143, 431, 287, 575

}i
e NTRU+864 and NTRU+1152
index[288] = {

1, 433, 217, 649, 109, 541, 325, 757, 55, 487, 271, 703, 163, 595, 379, 811,
19, 451, 235, 667, 127, 559, 343, 775, 73, 505, 289, 721, 181, 613, 397, 829,
37, 469, 253, 685, 145, 577, 361, 793, 91, 523, 307, 739, 199, 631, 415, 847,

7, 439, 223, 655, 115, 547, 331, 763, 61, 493, 277, 709, 169, 601, 385, 817,
25, 457, 241, 673, 133, 565, 349, 781, 79, 511, 295, 727, 187, 619, 403, 835,
43, 475, 259, 691, 151, 583, 367, 799, 97, 529, 313, 745, 205, 637, 421, 853,
13, 445, 229, 661, 121, 553, 337, 769, 67, 499, 283, 715, 175, 607, 391, 823,
31, 463, 247, 679, 139, 571, 355, 787, 85, 517, 301, 733, 193, 625, 409, 841,
49, 481, 265, 697, 157, 589, 373, 805, 103, 535, 319, 751, 211, 643, 427, 859,

5, 437, 221, 653, 113, 545, 329, 761, 59, 491, 275, 707, 167, 599, 383, 815,
23, 455, 239, 671, 131, 563, 347, 779, 77, 509, 293, 725, 185, 617, 401, 833,
41, 473, 257, 689, 149, 581, 365, 797, 95, 527, 311, 743, 203, 635, 419, 851,
11, 443, 227, 659, 119, 551, 335, 767, 65, 497, 281, 713, 173, 605, 389, 821,
29, 461, 245, 677, 137, 569, 353, 785, 83, 515, 299, 731, 191, 623, 407, 839,
47, 479, 263, 695, 155, 587, 371, 803, 101, 533, 317, 749, 209, 641, 425, 857,
17, 449, 233, 665, 125, 557, 341, 773, 71, 503, 287, 719, 179, 611, 395, 827,
35, 467, 251, 683, 143, 575, 359, 791, 89, 521, 305, 737, 197, 629, 413, 845,
53, 485, 269, 701, 161, 593, 377, 809, 107, 539, 323, 755, 215, 647, 431, 863

6.3 Specification of NTRU+
6.3.1 NTRU+

We specify the key encapsulation mechanism NTRU+-. In contrast to the construction in Section this
version instantiates a variant of FO in which the public key is hashed into the key-derivation input, follow-
ing the public-key—dependent FO transformation first introduced in KYBER [34] to enhance robustness in
multi-user settings. Algorithms [T} [12] and [13]specify the key generation, encapsulation, and decapsulation
procedures of NTRU+.

Algorithm 11: Gen(1%): key generation

Ensure: Public key pk € Bllog2417/8
Ensure: Secret key sk € 51082 ¢1n/4+32
1: repeat
22 d+ B*?
3 f = SHAKE-256(d, n/4)
4 f':=CBD:(f)
5: f=3f+1
6: f:=NTT(f)
;
8
9

: until f is invertible in 17,
: repeat
. d<+ B*?
10: g := SHAKE-256(d,n/4)
11: g :=CBD4(g)
122 g:=3¢g
13: g:=NTT(g)
14: until g is invertible in R,
15: h:=gof!
16: pk := Encode,(h)
17: sk := Encode,(f) || Encode,(h™') || F(pk)
18: return (pk, sk)

Algorithm 12: Encap(pk): encapsulation

Require: Public key pk € Bllos2a1/8
Ensure: Ciphertext ¢ € Blogz2a1n/8

1 m « B8

2: (K,r) :=H(m,F(pk))

3. r:= CBDy(r)

4: 1 :=NTT(r)

5: m := Encode(m, G(Encode,(t)))
6: m:= NTT(m)

7: h := Decode, (pk)

§: ¢:=hof+m

9: ¢ := Encode,(¢)

10: return (c, K)

42

Algorithm 13: Decap(sk, c): decapsulation

Require: Secret key sk e Bllogz aln/4+32
Require: Ciphertext ¢ € Bllog241/8
Ensure: Shared key K € 332
1: Parse sk = (ski, sko, sks) € Bllos2a1/8 x Bllogaaln/8 . 332

2: f := Decodey(sk1)

3: ¢ := Decode,(c)

4 m:=NTT ' (&of) mod *3

5:m:=NTT(m)

6 h1:= Decode,(sk2)

7: r:=(¢—m)o h! /lrandomness recovery (RRec)
8: m' := Decode(m, G(Encode,(T))) //Check m' = in line 12
9: (K,r") :=H(m/, sks)

10: v/ := CBD4 (1)

11: ¥/ :=NTT(r)

12: if m' =1 ort # ¢/, return L /ICheck if m’ =1L orr’ ¢ R,
13: else, return X

43

7 Parameters and Security Analysis

We define three parameter sets for NTRU+, which are listed in Table |7, We denote them by NTRU+{768,
864, and 1152}, respectively, depending on the degree n € {768,864, 1152} of the polynomial -z 241,
In all parameter sets the modulus is fixed to ¢ = 3457, and the coefficients of m and r are sampled according
to the distribution ¥} (i.e., Yy = by = ¢}). For each tuple (n,q, v, M = {0,1}"), the worst-
case correctness error ¢’ is calculated as &’ = § + A, where ¢ is the average-case correctness error of
GenNTRU[¢7] and A = [[¢g]| - (1 + +/(In|M'| — In[[¢g[])/2) as given in Theorem n Since A is
negligible for all parameter sets, the worst-case correctness error of NTRU+- is essentially identical to the
average-case correctness error of the corresponding GenNTRU[7'].

To estimate the concrete security level of NTRU+, we analyze the hardness of the RLWE,, 4 y» and
NTRUy, ¢y» problems for each parameter set. For the RLWE problem, we employ the Lattice estimator
(1] El which evaluates the best-known lattice attacks using the BKZ reduction algorithm [11], including
the primal [2]] and dual [29] attacks. For the NTRU problem, we use the NTRU estimator provided by the
finalist NTRU submission [[10], which incorporates both the primal attack and Howgrave—Graham’s hybrid
attack [21] over the NTRU lattice. The primal attack over the NTRU lattice is essentially the same as the
attack using the BKZ algorithm, and Howgrave-Graham’s hybrid attack is also based on the BKZ algorithm
combined with Odlyzko’s Meet-in-the-Middle (MitM) attack [24] on a (reduced) sub-lattice. As a result,
the concrete security level of the NTRU problem closely matches that of the RLWE problem. Table [6]
summarizes the resulting security levels for each NTRU+ parameter set. For the BKZ cost model, we use
20-292 [§]] in the classical setting and 2°-2°7% [9] in the quantum setting.

Recently, Lee et al. [27] proposed a combinatorial attack that improves upon May’s Meet-LWE attack
[32] and analyzed the concrete security level of NTRU+. Their analysis shows that the security of NTRU+
against this combinatorial attack does not fall below the levels predicted by the above Lattice and NTRU
estimators.

Scheme classical quantum
LWE [NTRU | LWE [NTRU
NTRU+768 | 156 164 139 144
NTRU+864 | 179 189 160 166
NTRU+1152 | 248 266 222 233

Table 6: Concrete Security Level relative to LWE and NTRU problems

>https://github.com/malb/lattice-estimator/tree/352ddaf4a288a0543f5d9eb588d2f89c 7acec463

44

8 Performance Analysis

All benchmarks were obtained on a single core of an Intel Core 17-8700K (Coffee Lake) processor running
at 3.7 GHz, with the benchmarking machine equipped with 64 GB of RAM. Implementations were compiled
using gec version 11.4.0. Table[7]lists the execution time of our optimized C and AVX2 implementations of
NTRU+, as well as those of NTRUEL and KYBE together with the estimated security level and the sizes
of the secret key, public key, and ciphertext. Execution time represent the average cycle counts over 100,000
runs of each algorithm. The source code for NTRU- is available at https://github.com/ntruplus/ntruplus.

When comparing NTRU and NTRU+-, Table [7| shows that the two schemes achieve similar bandwidth
(public key plus ciphertext) at comparable security levels. For example, NTRU4-864 at the 179-bit secu-
rity level requires 2,592 bytes of bandwidth, while ntruhps4096821 at the 171-bit security level requires
2,460 bytes. In terms of secret-key stroage, however, NTRU+ requires almost twice the cost of NTRU,
because it stores (f, h~!, F(pk)) as a the secret key, whereas NTRU stores only f. On the other hand, with
respect to execution time, NTRU~+ outperforms NTRU, largely due to the use of NTT-friendly rings.

When comparing KYBER and NTRU+-, the bandwidth of NTRU+ is slightly larger than that of KYBER
at comparable security levels. This is because KYBER uses a rounding technique to reduce the ciphertext
size. In terms of efficiency, Table [/| shows that, at similar security levels, the key generation, encapsula-
tion, and decapsulation of NTRU+- are all faster than those of KYBER in both the optimized C and AVX2
implementations.

®We use the code submitted to the NIST PQC Standardization Round 3.
"https://github.com/pg-crystals/kyber/tree/4768bd37c02f9c40a46cb49d4d 1 f4d5e612bb882

45

https://github.com/ntruplus/ntruplus

‘suongyuawa[dur gX AV 10 D paziumdo Jo s9[oAd I :(deds(‘desuq] ‘uso)

“JOLI9 $SAUIOALI0D (109)1d 10) 9seo-1s10m 1,0 "sAAQ :(ys ‘w0 ‘yd) -snpowt :b -Julr oy Jo 92139p [erwouk|od :u
eL L 00¥ | 19CF | €00C |6L8IC | ©C°- | 0651 | 0€CI | 0ECT | 960% | 1C8 [4Y! IL1 128960%sdynJu
8¢ 29 98C | 006C | TLOT [8FI9T | ©O- |¥ECI | 06 | 06 | 8YOC | LL9 LTl [44! L298v0gsdyniiu
19 ov 0L | 611¢ | 0901 |vIvLI | ©©- |OSvI [8CII | 8CIT | 2618 | 10L LT1 (43! T0/ssaynayu
ov Sy LLT | LSOT | ¥29 | 96T6 | ©°- | S€6 | 669 | 669 |8¥0C | 60S €6 Y01 604870¢sdyniiu
99 9 9 134 88¢ vee | vLI- | 891¢€ | 89ST | 89CT | 6C¢ct | ¥C01 CIc v IAURELRS |
514 144 Sy 8I¢ 86¢C ceC | v91- | 00vC | 8801 | ¥8IT | 62t | 89L cel VLI 89LdddAY
0¢ 6¢ 8¢ €0¢ 651 el | 6€l- | CEOI | 89L | 008 |6CEL | CIS €0l Sl CISAddaAD]
0¢ Sy 144 9¢l1 811 9LT | 09C- | 88¥¢ | 8CLI | 8CLI | LSvE | CSTI (444 817¢C CSTT+NYLN
14 9¢ 6¢ 06 L8 ITT | O¥e- | ¥C9C | 96C1 | 96CI | LSYE | ¥98 091 6L1 798+NY LN
61 Ie LT 8L SL 66 6LE- | 9€€C | CSIT | CSIT | LSYE | 89L 6¢l 9¢1 89.+NYLN

deos(g Tmucm_ 7 usn |deds(?mucm_ 7 us9) 2 d 5 wnuenb | [eorsse[od
XAV D poziwundo B7OOT A8 P 1 “ [9A9] AIINO9s SWSHdS

+FNYLN Pue ¥FIAY ‘NALN ISIeuy ay) usomioq uostredwo)) 1/ 9[qeL,

46

References

[1]

(2]

[9]

[10]

Martin R. Albrecht, Rachel Player, and Sam Scott. On the concrete hardness of learning with errors.
J. Math. Cryptol., 9(3):169-203, 2015.

Erdem Alkim, Léo Ducas, Thomas Poppelmann, and Peter Schwabe. Post-quantum key exchange -
A new hope. In Thorsten Holz and Stefan Savage, editors, USENIX Security 2016: 25th USENIX
Security Symposium, pages 327-343, Austin, TX, USA, August 10-12, 2016. USENIX Association.

Andris Ambainis, Mike Hamburg, and Dominique Unruh. Quantum security proofs using semi-
classical oracles. In Alexandra Boldyreva and Daniele Micciancio, editors, Advances in Cryptology —
CRYPTO 2019, Part II, volume 11693 of Lecture Notes in Computer Science, pages 269-295, Santa
Barbara, CA, USA, August 18-22, 2019. Springer, Cham, Switzerland.

Andris Ambainis, Ansis Rosmanis, and Dominique Unruh. Quantum attacks on classical proof sys-
tems: The hardness of quantum rewinding. In 55th Annual Symposium on Foundations of Computer
Science, pages 474-483, Philadelphia, PA, USA, October 18-21, 2014. IEEE Computer Society Press.

Anja Becker, Léo Ducas, Nicolas Gama, and Thijs Laarhoven. New directions in nearest neighbor
searching with applications to lattice sieving. In Robert Krauthgamer, editor, 27th Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 10-24, Arlington, VA, USA, January 10-12, 2016. ACM-
SIAM.

Mihir Bellare and Phillip Rogaway. The security of triple encryption and a framework for code-
based game-playing proofs. In Serge Vaudenay, editor, Advances in Cryptology — EUROCRYPT 2006,
volume 4004 of Lecture Notes in Computer Science, pages 409-426, St. Petersburg, Russia, May 28 —
June 1, 2006. Springer Berlin Heidelberg, Germany.

Daniel J. Bernstein and Edoardo Persichetti. Towards KEM unification. Cryptology ePrint Archive,
Report 2018/526, 2018.

Nina Bindel, Mike Hamburg, Kathrin Hévelmanns, Andreas Hiilsing, and Edoardo Persichetti. Tighter
proofs of CCA security in the quantum random oracle model. In Dennis Hofheinz and Alon Rosen,
editors, TCC 2019: 17th Theory of Cryptography Conference, Part I, volume 11892 of Lecture Notes
in Computer Science, pages 61-90, Nuremberg, Germany, December 1-5, 2019. Springer, Cham,
Switzerland.

André Chailloux and Johanna Loyer. Lattice sieving via quantum random walks. In Mehdi Tibouchi
and Huaxiong Wang, editors, Advances in Cryptology — ASIACRYPT 2021, Part IV, volume 13093 of
Lecture Notes in Computer Science, pages 63-91, Singapore, December 610, 2021. Springer, Cham,
Switzerland.

Cong Chen, Oussama Danba, Jeffrey Hoffstein, Andreas Hulsing, Joost Rijneveld, John M.
Schanck, Peter Schwabe, William Whyte, Zhenfei Zhang, Tsunekazu Saito, Takashi Ya-
makawa, and Keita Xagawa. @ NTRU. Technical report, National Institute of Standards
and Technology, 2020. available at https://csrc.nist.gov/projects/post-quantum-cryptography/
post-quantum-cryptography-standardization/round-3-submissions.

47

https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Yuanmi Chen and Phong Q. Nguyen. BKZ 2.0: Better lattice security estimates. In Dong Hoon Lee
and Xiaoyun Wang, editors, Advances in Cryptology — ASIACRYPT 2011, volume 7073 of Lecture
Notes in Computer Science, pages 1-20, Seoul, South Korea, December 4-8, 2011. Springer Berlin
Heidelberg, Germany.

Jan-Pieter D’ Anvers, Qian Guo, Thomas Johansson, Alexander Nilsson, Frederik Vercauteren, and In-
grid Verbauwhede. Decryption failure attacks on IND-CCA secure lattice-based schemes. In Dongdai
Lin and Kazue Sako, editors, PKC 2019: 22nd International Conference on Theory and Practice of
Public Key Cryptography, Part II, volume 11443 of Lecture Notes in Computer Science, pages 565—
598, Beijing, China, April 1417, 2019. Springer, Cham, Switzerland.

Jan-Pieter D’Anvers, Angshuman Karmakar, Sujoy Sinha Roy, Frederik Vercauteren, Jose
Maria Bermudo Mera, Michiel Van Beirendonck, and Andrea Basso. SABER. Technical report,
National Institute of Standards and Technology, 2020. available at https://csrc.nist.gov/projects/
post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions.

Alexander W. Dent. A designer’s guide to KEMs. In Kenneth G. Paterson, editor, 9th IMA Interna-
tional Conference on Cryptography and Coding, volume 2898 of Lecture Notes in Computer Science,
pages 133-151, Cirencester, UK, December 16—18, 2003. Springer Berlin Heidelberg, Germany.

Jelle Don, Serge Fehr, Christian Majenz, and Christian Schaffner. Online-extractability in the quantum
random-oracle model. In Orr Dunkelman and Stefan Dziembowski, editors, Advances in Cryptology
— EUROCRYPT 2022, Part IlI, volume 13277 of Lecture Notes in Computer Science, pages 677706,
Trondheim, Norway, May 30 — June 3, 2022. Springer, Cham, Switzerland.

Julien Duman, Kathrin Hévelmanns, Eike Kiltz, Vadim Lyubashevsky, Gregor Seiler, and Dominique
Unruh. A thorough treatment of highly-efficient NTRU instantiations. In Alexandra Boldyreva and
Vladimir Kolesnikov, editors, PKC 2023: 26th International Conference on Theory and Practice of
Public Key Cryptography, Part I, volume 13940 of Lecture Notes in Computer Science, pages 65-94,
Atlanta, GA, USA, May 7-10, 2023. Springer, Cham, Switzerland.

Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmetric and symmetric encryption
schemes. Journal of Cryptology, 26(1):80-101, January 2013.

Chenar Abdulla Hassan and Oguz Yayla. Radix-3 NTT-based polynomial multiplication for lattice-
based cryptography. Cryptology ePrint Archive, Report 2022/726, 2022.

Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman. NTRU: A ring-based public key cryptosystem.
In Third Algorithmic Number Theory Symposium (ANTS), volume 1423 of Lecture Notes in Computer
Science, pages 267-288. Springer, June 1998.

Dennis Hofheinz, Kathrin Hovelmanns, and Eike Kiltz. A modular analysis of the Fujisaki-Okamoto
transformation. In Yael Kalai and Leonid Reyzin, editors, TCC 2017: 15th Theory of Cryptography
Conference, Part I, volume 10677 of Lecture Notes in Computer Science, pages 341-371, Baltimore,
MD, USA, November 12-15, 2017. Springer, Cham, Switzerland.

Nick Howgrave-Graham. A hybrid lattice-reduction and meet-in-the-middle attack against NTRU. In
Alfred Menezes, editor, Advances in Cryptology — CRYPTO 2007, volume 4622 of Lecture Notes in
Computer Science, pages 150-169, Santa Barbara, CA, USA, August 19-23, 2007. Springer Berlin
Heidelberg, Germany.

48

https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

Nick Howgrave-Graham, Phong Q. Nguyen, David Pointcheval, John Proos, Joseph H. Silverman, Ari
Singer, and William Whyte. The impact of decryption failures on the security of NTRU encryption.
In Dan Boneh, editor, Advances in Cryptology — CRYPTO 2003, volume 2729 of Lecture Notes in
Computer Science, pages 226-246, Santa Barbara, CA, USA, August 17-21, 2003. Springer Berlin
Heidelberg, Germany.

Nick Howgrave-Graham, Joseph H. Silverman, Ari Singer, and William Whyte. NAEP: Provable
security in the presence of decryption failures. Cryptology ePrint Archive, Report 2003/172, 2003.

Nick Howgrave-Graham, Joseph H. Silverman, and William Whyte. A meet-in-the-middle attack on
an ntru private key. Technical report, NTRU Cryptosystems, 2003. available at https://ntru.org/t/tr/
tr004v2.pdf.

Andreas Hiilsing, Joost Rijneveld, and Fang Song. Mitigating multi-target attacks in hash-based
signatures. In Chen-Mou Cheng, Kai-Min Chung, Giuseppe Persiano, and Bo-Yin Yang, editors,
PKC 2016: 19th International Conference on Theory and Practice of Public Key Cryptography, Part I,
volume 9614 of Lecture Notes in Computer Science, pages 387-416, Taipei, Taiwan, March 6-9, 2016.
Springer Berlin Heidelberg, Germany.

Haodong Jiang, Zhenfeng Zhang, Long Chen, Hong Wang, and Zhi Ma. IND-CCA-secure key encap-
sulation mechanism in the quantum random oracle model, revisited. In Hovav Shacham and Alexandra
Boldyreva, editors, Advances in Cryptology — CRYPTO 2018, Part 111, volume 10993 of Lecture Notes
in Computer Science, pages 96—125, Santa Barbara, CA, USA, August 19-23, 2018. Springer, Cham,
Switzerland.

Eunmin Lee, Joohee Lee, and Yuntao Wang. Improved meet-LWE attack via ternary trees. Cryptology
ePrint Archive, Report 2024/824, 2024.

Joohee Lee, Minju Lee, Hansol Ryu, and Jaehui Park. A novel CCA attack for NTRU+ KEM. Cryp-
tology ePrint Archive, Report 2023/1188, 2023.

Richard Lindner and Chris Peikert. Better key sizes (and attacks) for LWE-based encryption. In Agge-
los Kiayias, editor, Topics in Cryptology — CT-RSA 2011, volume 6558 of Lecture Notes in Computer
Science, pages 319-339, San Francisco, CA, USA, February 14-18, 2011. Springer Berlin Heidelberg,
Germany.

Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learning with errors over
rings. In Henri Gilbert, editor, Advances in Cryptology — EUROCRYPT 2010, volume 6110 of Lecture
Notes in Computer Science, pages 1-23, French Riviera, May 30 — June 3, 2010. Springer Berlin
Heidelberg, Germany.

Vadim Lyubashevsky and Gregor Seiler. NTTRU: Truly fast NTRU using NTT. IACR Transactions
on Cryptographic Hardware and Embedded Systems, 2019(3):180-201, 2019.

Alexander May. How to meet ternary LWE keys. In Tal Malkin and Chris Peikert, editors, Advances
in Cryptology — CRYPTO 2021, Part 11, volume 12826 of Lecture Notes in Computer Science, pages
701-731, Virtual Event, August 16-20, 2021. Springer, Cham, Switzerland.

49

https://ntru.org/f/tr/tr004v2.pdf
https://ntru.org/f/tr/tr004v2.pdf

[33]

[34]

[35]

[36]

Tsunekazu Saito, Keita Xagawa, and Takashi Yamakawa. Tightly-secure key-encapsulation mech-
anism in the quantum random oracle model. In Jesper Buus Nielsen and Vincent Rijmen, editors,
Advances in Cryptology — EUROCRYPT 2018, Part III, volume 10822 of Lecture Notes in Computer
Science, pages 520-551, Tel Aviv, Israel, April 29 — May 3, 2018. Springer, Cham, Switzerland.

Peter Schwabe, Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tancrede Lepoint, Vadim Lyuba-
shevsky, John M. Schanck, Gregor Seiler, and Damien Stehlé. CRYSTALS-KYBER. Technical re-
port, National Institute of Standards and Technology, 2020. available at https://csrc.nist.gov/projects/
post-quantum-cryptography/post-quantum-cryptography-standardization/round- 3- submissions.

Jiang Zhang, Dengguo Feng, and Di Yan. NEV: Faster and smaller NTRU encryption using vec-
tor decoding. In Jian Guo and Ron Steinfeld, editors, Advances in Cryptology — ASIACRYPT 2023,
Part VII, volume 14444 of Lecture Notes in Computer Science, pages 157-189, Guangzhou, China,
December 4-8, 2023. Springer, Singapore, Singapore.

Zhenfei Zhang, Cong Chen, Jeffrey Hoffstein, and William Whyte. NTRUEncrypt. Technical re-
port, National Institute of Standards and Technology, 2017. available at https://csrc.nist.gov/projects/
post-quantum-cryptography/post-quantum-cryptography-standardization/round- 1-submissions.

50

https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-1-submissions

A Factoring the Trinomial

For a better understanding of applying the NTT, we describe the recursive factorization of the polynomial
1192 — 2576 4 1in Zq|x]. Considering the initial Radix-2 NTT layer, the polynomial is factored as

.”131152 _ 1‘576 4+1= (1,‘576 _ C144)(1‘576 _ C?QO)7

where ¢ is a primitive £ = 864-th root of unity, and ¢*/6 = ¢'** is a primitive sixth root of unity modulo g.
Considering the Radix-3 NTT layer, these factors are further decomposed into lower-degree polynomi-

als. For instance, the factorization of 2°76 — (14 yields

1‘576 _ C144 — (1,192 _ C48)(x192 _ C48W)(IL‘192 _ C48w2)

= (192 — (48) (5192 _ (336) (5192 _ (624
where w = (288 = (/3 s a primitive third root of unity modulo gq.
Considering the subsequent Radix-2 NTT layers, these factors are further bisected. For example,

2192 (A8 — (96 _ (24) (596 4 24y _ (596 _ (24)(;96 _ (456)

where (%32 is a primitive second root (¢¢/2 = —1 (mod q)). This recursive factorization continues until the
polynomials reach the terminal degree d = 4, defining the final component rings of the NTT domain.

B Radix-3 NTT layer

For a clearer understanding, we describe the Radix-3 NTT layer used in our implementation. The Radix-3
NTT layer establishes a ring isomorphism between Z,[z]/(z™ — o3) and the product ring Z,[x]/(z™/ —
@) X Zglx] /(™3 — B) x Zy[x] /(™3 — ~), where B = aw and v = aw? (with w representing a primitive
third root of unity modulo). To transform a polynomial a(z) = ag(x) + a1(z)z™3 + ag(x)x®*/? €
Zglx] /(2™ —) (where ag(z), a1 (x), and az(x) are polynomials with maximum degree n/3 — 1) into the
form (o (), a1(x),a2(x)) € Zy[x]/ (™3 — a) x Zy[z]/ (x> — B) x Zg[z]/ (™ — +), the following
equations must be computed.

ao(z) = ap(z) + a1 (z)a + az(z)a?,

a1(z) = ao(z) + a1(z)B + az(z) 5%,

ag(x) = ao(x) + ar(x)y + ag(x)y?.

Naively, these equations might appear to require 2n multiplications and 2n additions, relying on six pre-
defined values: «, o2, B, 62, v, and 72. Nevertheless, following the techniques in [[18]], this cost can be
reduced to n multiplications, n additions, and 4n/3 subtractions, while using only three predefined values
a, @2, and w as shown in Algorithm

ao(x) = ap(x) + a1 (z)a + az(z)a?,
a1 (x) = ap(z) — ag(:v)oz2 +w(a(z)a — ag(x)az),

ao(x) = ap(x) — ar(z)a — w(ar (z)a — az(z)a?).

51

Algorithm 14: Radix-3 NTT layer
Require: a(z) = ag(x) + a1 (z)x™? + ag(2)x?/? € Zy[x]/(x™ — ¢3)
Ensures (ao(2), i (z), aa(x)) € Zylol/ (a3 — a) x Zofa)/ (/% B) x Z,lal/(a"/* —)

1: t1(z) = a1 ()

2: ta(x) = ag(x)a?

3 ts3(x) = (t1(x) — ta(z))w

4: ag(x) = ag(z) — t1(x) — t3(x)
5. a1(x) = ap(x) — ta(x) + t3(x)
6: ao(z) = ap(x) + t1(x) + t2(z)
7: return (ao(x), a1 (x), az(x))

Considering the aforementioned Radix-3 NTT layer, we need to compute the following equations to
recover a(x) € Zg[x]/(x™ — ¢3) from (ag(x),a1(x), as(x)) € Zq[a:]/<a:”/3 —) X Zq[x]/<3:”/3 — B) x
Zyla) /@ =).

3ao($)=do($)+d1() + as(x)
3a1(z) = ao(v)a ™t + a1 (2)3 + ag(z)y 71,
Baz(z) = ao(x)a™? + a1 () B2 + aa(x)y %

Naively, these equations might appear to require 2n multiplications and 2n additions, relying on six prede-
fined values: a1, a2, B‘l, ﬁ_Q, 7_1, and ’y_g. Nevertheless, by following the techniques in [18]], we can
significantly reduce this computational load to n multiplications, n additions, and 4n /3 subtractions, while
using only three predefined values: o', =2, and w, as described in Algorithm

Algorithm 15: Radix-3 Inverse NTT layer

Require: (ao(), a1(z), a2 (x)) € Zglz]/ (@™ — a) x Zy[2]/(@"® = B) x Zy[z]/(x"® =)
Ensure: 3a(z) = 3a0(1:A) + 3a1(x) 2™ + 3ag () 2?3 € Zy[z] /(2™ — o)

1t () = w(ar(z) — ag(x))

2 ty(x) = ao(x) — ax(x) — t1(x)

5 ty(2) = io(2) — o) + 11(2)

4: 3ap(z) = ao(x) + a1 (x) + az(z)

5: 3a1(z) = ta(z)a?

6: 3az(z) = t3(x)a2

7: return 3a(x) = 3ao(x) + 3ay(x)x"™> + 3ag(x) x>/

Note that we can reuse the predefined table used for the NTT in the computation of the inverse NTT.

3ag(x) = ao(z) + a1(z) + ao(x
3a1(z) = (wa)(d()
3az(z) = (w’a™?)(a

	Introduction
	Our Results
	Related Works

	Preliminaries
	Basic Notations
	Public-Key Encryption
	Key Encapsulation Mechanism
	Complexity Assumptions
	Auxiliary Lemmas for the Security Proofs

	ACWC2 Transformation
	SOTP
	ACWC2
	Security Proof in the ROM
	Security Proof in the QROM
	Spreadness of PKE'

	IND-CCA Secure KEM from ACWC2
	FO Transform with Re-encryption
	FO-Equivalent Transform Without Re-encryption
	Security Proof in the ROM
	Security Proof in the QROM

	NTRU+
	GenNTRU[psi_1n̂] (=PKE)
	Security Proofs
	Average-Case Correctness Error
	Injectivity
	Spreadness
	Randomness-Recoverability
	Message-Recoverability
	Randomness-Uniqueness

	CPA-NTRU+ (=PKE')
	Instantiation of SOTP
	CPA-NTRU+ (=PKE')

	NTRU+

	Algorithm Specification
	Auxiliary Functions
	Number Theoretic Transform
	Specification of NTRU+
	NTRU+

	Parameters and Security Analysis
	Performance Analysis
	Factoring the Trinomial
	Radix-3 NTT layer

