
NTRU+
Algorithm Specifications And Supporting Documentation

(version 1.1)

1

NTRU+: Compact Construction of NTRU
Using Simple Encoding Method*†

Jonghyun Kim‡ Jong Hwan Park§

September 16, 2023

Abstract

NTRU was the first practical public key encryption scheme constructed on a lattice over a polynomial-
based ring and has been considered secure against significant cryptanalytic attacks over the past few
decades. However, NTRU and its variants suffer from several drawbacks, including difficulties in achiev-
ing worst-case correctness error in a moderate modulus, inconvenient sampling distributions for mes-
sages, and relatively slower algorithms compared to other lattice-based schemes.

In this work, we propose a new NTRU-based key encapsulation mechanism (KEM), called NTRU+,
which overcomes nearly all existing drawbacks. NTRU+ is constructed based on two new generic
transformations: ACWC2 and FO

⊥
(a variant of the Fujisaki-Okamoto transform). ACWC2 is used to

easily achieve worst-case correctness error, while FO
⊥

is used to achieve chosen-ciphertext security
without re-encryption. Both ACWC2 and FO

⊥
are defined using a randomness-recovery algorithm and

an encoding method. In particular, our simple encoding method, the semi-generalized one-time pad
(SOTP), allows us to sample a message from a natural bit-string space with an arbitrary distribution. We
provide four parameter sets for NTRU+ and present implementation results using NTT-friendly rings
over cyclotomic trinomials.

Keywords: NTRU, RLWE, Lattice-based cryptography, Post-quantum cryptography.

1 Introduction

The NTRU encryption scheme [15] was introduced in 1998 by Hoffstein, Pipher, and Silverman as the first
practical public key encryption scheme using lattices over polynomial rings. The hardness of NTRU is
crucially based on the NTRU problem [15], which has withstood significant cryptanalytic attacks over the
past few decades. This longer history, compared to other lattice-based problems (such as ring/module-LWE),
has been considered an important factor in selecting NTRU as a finalist in the NIST PQC standardization
process. While the finalist NTRU [6] has not been chosen by NIST as one of the first four quantum-resistant
cryptographic algorithms, it still has several distinct advantages over other lattice-based competitive schemes
such as KYBER [25] and Saber [9]. Specifically, the advantages of NTRU include: (1) the compact structure

*This work is submitted to ‘Korean Post-Quantum Cryptography Competition’ (www.kpqc.or.kr).
†This work was supported by Institute of Information & communications Technology Planning & Evaluation (IITP) grant funded

by the Korea government(MSIT) (No.2021-00518, Blockchain privacy preserving techniques based on data encryption).
‡Korea University, Seoul, Korea. Email: yoswuk@korea.ac.kr.
§Sangmyung University, Seoul, Korea. Email: jhpark@smu.ac.kr.

2

www.kpqc.or.kr

of a ciphertext consisting of a single polynomial, and (2) (possibly) faster encryption and decryption without
the need to sample the coefficients of a public key polynomial.

The central design principle of NTRU is described over a ring Rq = Zq[x]/⟨f(x)⟩, where q is a positive
integer and f(x) is a polynomial. The public key is generated as h = pg/(pf ′ + 1)1, where g and f ′ are
sampled according to a narrow distribution ψ, p is a positive integer that is coprime with q and smaller than
q (e.g., 3), and the corresponding private key is f = pf ′ + 1. To encrypt a message m sampled from the
message spaceM′, one creates two polynomials r and m, with coefficients drawn from a narrow distribution
ψ, and computes the ciphertext c = hr+m in Rq. An (efficient) encoding method may be used to encode
m ∈ M′ into m and r ∈ Rq. Alternatively, it is possible to directly sample m and r from ψ, where m is
considered as the message to be encrypted. To decrypt the ciphertext c, one computes cf in Rq, recovers m
by deriving the value cf ′ modulo p, and (if necessary) decodes m to obtain the message m. The decryption
of NTRU works correctly if all the coefficients of the polynomial p(gr + f ′m) + m are less than q/2.
Otherwise, the decryption fails, and the probability that it fails is called a correctness (or decryption) error.

In the context of chosen-ciphertext attacks, NTRU, like other ordinary public key encryption schemes,
must guarantee an extremely negligible worst-case correctness error. This is essential to prevent the leak-
age of information about the private key through adversarial decryption queries, such as attacks against
lattice-based encryption schemes [18, 8]. Roughly speaking, the worst-case correctness error refers to the
probability that decryption fails for any ciphertext that can be generated with all possible messages and
randomness in their respective spaces. The worst-case correctness error considers that an adversary, A, can
maliciously choose messages and randomness without sampling normally according to their original distri-
butions (if possible). In the case of NTRU, the failure to decrypt a specific ciphertext c = hr+m provides
A with the information that one of the coefficients of p(gr + f ′m) + m is larger than or equal to q/2. If
A has control over the choice of r and m, even one such decryption failure may open a path to associated
decryption queries to obtain more information about secret polynomials g and f .

When designing NTRU, two approaches can be used to achieve worst-case correctness error. One ap-
proach is to draw m and r directly from ψ, while setting the modulus q to be relatively large. The larger q
guarantees a high probability that all coefficients of p(gr+f ′m)+m are less than q/2 for nearly all possible
m and r in their spaces, although it causes inefficiency in terms of public key and ciphertext sizes. Indeed,
this approach has been used by the third-round finalist NTRU [6], wherein all recommended parameters pro-
vide perfect correctness error (i.e., the worst-case correctness error becomes zero for all possible m and r).
By contrast, the other approach [12] is to use an encoding method by which a message m ∈M′ is used as a
randomness to sample m and r according to ψ. Under the Fujisaki-Okamoto (FO) transform [13], decrypt-
ing a ciphertext c requires re-encrypting m by following the same sampling process as encryption. Thus,
an ill-formed ciphertext that does not follow the sampling rule will always fail to be successfully decrypted,
implying that m and r should be honestly sampled by A according to ψ. Consequently, by disallowing A
to have control over m and r, the NTRU with an encoding method has a worst-case correctness error that is
close to an average-case error.

Based on the aforementioned observation, [12] proposed generic (average-case to worst-case) transfor-
mations2 that make the average-case correctness error of an underlying scheme nearly close to the worst-case
error of a transformed scheme. One of their transformations (denoted by ACWC) is based on an encoding
method called the generalized one-time pad (denoted by GOTP). Roughly speaking, GOTP works as fol-

1There is another way of creating the public key as h = pg/f , but we focus on setting h = pg/(pf ′ + 1) for a more efficient
decryption process.

2They proposed two transformations called ACWC0 and ACWC. In this paper, we focus on ACWC that does not expand the
size of a ciphertext.

3

Scheme NTRU[6] NTRU-B [12] NTRU+

NTT-friendly No Yes Yes
Correctness error Perfect Worst-case Worst-case
(m, r)-encoding No Yes Yes

Message set m, r← {−1, 0, 1}n m← {−1, 0, 1}λ m← {0, 1}n
Message distribution Uniform/Fixed-weight Uniform Arbitrary

CCA transform DPKE + SXY variant ACWC + FO⊥ ACWC2 + FO
⊥

Assumptions NTRU, RLWE NTRU, RLWE NTRU, RLWE
Tight reduction Yes No Yes

n: polynomial degree of the ring. λ: length of the message. DPKE: deterministic public key encryption.

SXY variant: SXY transformation [24] described in the finalist NTRU.

Table 1: Comparison to previous NTRU constructions

lows: a message m ∈ M′ is first used to sample r and m1 according to ψ, and m2 = GOTP(m,G(m1))
using a hash function G, and then m is constructed as m1||m2. If the GOTP acts as a sampling function
wherein the output follows ψ, m and r are created from m following ψ, which can be verified in decryption
using the FO transform. Specifically, for two inputs m and G(m1) that are sampled from {−1, 0, 1}λ for
some integer λ, m2 ∈ {−1, 0, 1}λ is computed by doing the component-wise exclusive-or modulo 3 of two
ternary strings m and G(m1). Thus, if G(m1) follows a uniformly random distribution ψ over {−1, 0, 1}λ,
m is hidden from m2 because of the one-time pad property.

However, an ACWC based on the GOTP has two disadvantages in terms of security reduction and
message distribution. First, [12] showed that ACWC converts a one-way CPA (OW-CPA) secure underlying
scheme into a transformed one that is still OW-CPA secure, besides the fact that their security reduction
is loose3 by causing a security loss factor of qG, the number of random oracle queries. Second, ACWC
forces even a message m ∈ M′ to follow a specific distribution because their security analysis of ACWC
requires GOTP to have the additional randomness-hiding property, meaning that G(m1) should also be
hidden from the output m2. Indeed, the NTRU instantiation from ACWC, called ‘NTRU-B’ [12], requires
that m should be chosen uniformly at random fromM′ = {−1, 0, 1}λ. Notably, it is difficult to generate
exactly uniformly random numbers from {−1, 0, 1} in constant time due to rejection sampling. Therefore,
it was an open problem [12] to construct a new transformation that permits a different, more easily sampled
distribution of a message while relying on the same security assumptions.

1.1 Our Results

We propose a new practical NTRU construction called “NTRU+” that addresses the two drawbacks of the
previous ACWC. To achieve this, we introduce a new generic ACWC transformation, denoted as ACWC2,
which utilizes a simple encoding method. By using ACWC2, NTRU+ achieves a worst-case correctness
error close to the average-case error of the underlying NTRU. Additionally, NTRU+ requires the message
m to be drawn from M′ = {0, 1}n (for a polynomial degree n), following an arbitrary distribution with
high min-entropy, and is proven to be tightly secure under the same assumptions as NTRU-B, the NTRU
and RLWE assumptions. To achieve chosen-ciphertext security, NTRU+ relies on a novel FO-equivalent

3[12] introduced a new security notion, q-OW-CPA, which states that an adversary outputs a set Q with a maximum size of
q and wins if the correct message corresponding to a challenged ciphertext belongs to Q. We believe that q-OW-CPA causes a
security loss of q.

4

ACWC0[12] ACWC[12] ACWC2

Message encoding No GOTP SOTP

Message distribution Arbitrary Uniform Arbitrary
Ciphertext expansion Yes No No

Transformation OW-CPA→ IND-CPA OW-CPA→ OW-CPA OW-CPA→ IND-CPA
Tight reduction No No Yes

Underlying PKE Any Any Injective + MR + RR
MR: message-recoverable. RR: randomness-recoverable.

Table 2: Comparison to previous ACWC transformations

transform without re-encryption, which makes the decryption algorithm of NTRU+ faster than in the or-
dinary FO transform. In terms of efficiency, we use the idea from [23] to apply the Number Theoretic
Transform (NTT) to NTRU+ and therefore instantiate NTRU+ over a ring Rq = Zq[x]/⟨f(x)⟩, where
f(x) = xn − xn/2 + 1 is a cyclotomic trinomial. By selecting appropriate (n, q) and ψ, we suggest four
parameter sets for NTRU+ and provide the implementation results for NTRU+ in each parameter set. Table
1 lists the main differences between the previous NTRU constructions [6, 12] and NTRU+. In the following
section, we describe our technique, focusing on these differences.
ACWC2 Transformation with Tight Reduction. ACWC2 is a new generic transformation that allows for
the aforementioned average-case to worst-case correctness error conversion. However, to apply ACWC2, the
underlying scheme is required to have injectivity, randomness-recoverable (RR), and message-recoverable
(MR) properties, which are typical of NTRU.4 Additionally, ACWC2 involves an encoding method called
semi-generalized one-time pad (denoted by SOTP). In contrast to the GOTP in [12], SOTP works in
a generic sense as follows: first, a message m ∈ M′ is used to sample r based on ψ, and then m =
SOTP(m,G(r)) is computed, where the coefficients follow ψ, using a hash function G. When decrypting a
ciphertext c = Enc(pk,m; r) under a public key pk, m is recovered by a normal decryption algorithm, and
using m, r is also recovered by a randomness-recovery algorithm. Finally, an inverse of SOTP using G(r)
and m yields m.

The MR property of an underlying scheme allows us to show that, without causing any security loss,
ACWC2 transforms an OW-CPA secure scheme into a chosen-plaintext (IND-CPA) secure scheme. The
proof idea is simple: unless an IND-CPA adversary A queries r to a (classical) random oracle G, A does
not obtain any information on mb (that A submits) for b ∈ {0, 1} because of the basic message-hiding
property of SOTP. However, whenever A queries ri to G for i = 1, · · · , qG, a reductionist can check
whether each ri is the randomness used for its OW-CPA challenge ciphertext using a message-recovery
algorithm. Therefore, the reductionist can find the exact ri among the qG number of queries if A queries ri
(with respect to its IND-CPA challenge ciphertext) to G. In this security analysis, it is sufficient for SOTP to
have the message-hiding property, which makes SOTP simpler than GOTP because GOTP must have both
message-hiding and randomness-hiding properties.

Table 2 presents a detailed comparison between previous ACWC transformations and our new ACWC2.
Unlike the previous ACWC based on GOTP, [12] proposed another generic ACWC transformation (denoted
by ACWC0) without using any message-encoding method. In ACWC0, a (bit-string) messagem is encrypted
with a ciphertext c = (Enc(pk,m; r),F(m) ⊕ m) using a hash function F, which causes the ciphertext

4In the decryption of NTRU with pk = h, given (pk, c,m), r is recovered as r = (c−m)h−1. Similarly, given (pk, c, r), m
is recovered as m = c− hr.

5

GenNTRU[ψn1]
OW-CPA

CPA-NTRU+
IND-CPA

CCA-NTRU+
IND-CCA

NTRU+
IND-CCA

ACWC2

Thm. 3.5(ROM)

FO⊥

Thm. 4.1(ROM)
FO
⊥

Lem. 4.3

Thm. 3.7(QROM) Thm. 4.2(QROM)

average-case correctness error worst-case correctness error CCA-secure KEM

: tight security reduction : non-tight security reduction : tight security equivalence

Figure 1: Overview of security reductions

expansion of F(m)⊕m, whereas such a ciphertext redundancy does not occur in ACWC and ACWC2. Like
ACWC2, ACWC0 transforms any OW-CPA secure scheme into an IND-CPA secure one, but their security
reduction is not tight as in ACWC. ACWC0 and ACWC2 requires no specific message distribution, whereas
ACWC requires m ∈ M′ to be sampled according to a uniformly random distribution fromM′. ACWC0

and ACWC work for any OW-CPA secure scheme, but ACWC2 works for any OW-CPA secure scheme
satisfying injectivity, MR, and RR properties.
FO-Equivalent Transform without Re-encryption. To achieve chosen-ciphertext (IND-CCA) security,
we apply the generic transform FO⊥ to the ACWC2-derived scheme, which is IND-CPA secure. As with
other FO-transformed schemes, the resulting scheme from ACWC2 and FO⊥ is still required to perform
re-encryption in the decryption process to check if (1) (m, r) are correctly generated from m and (2) a
(decrypted) ciphertext c is correctly encrypted from (m, r). However, by using the RR property of the
underlying scheme, we further remove the re-encryption process from FO⊥. Instead, the more advanced
transform (denoted by FO

⊥
) simply checks whether r from the randomness-recovery algorithm is the same

as the (new) randomness r′ created from m. We show that FO
⊥

is functionally identical to FO⊥ by proving
that the randomness-checking process in FO

⊥
is equivalent to the re-encryption process FO⊥. The equiv-

alence proof relies mainly on the injectivity [16, 5] and rigidity [4] properties of the underlying schemes.
As a result, although the RR property seems to incur some additional decryption cost, it ends up making
the decryption algorithm faster than the original FO transform. Figure 1 presents an overview of security
reductions from OW-CPA to IND-CCA.
Simple SOTP Instantiation with More Convenient Sampling Distributions. As mentioned previously,
ACWC2 is based on an efficient construction of SOTP that takes m and G(r) as inputs and outputs m =
SOTP(m,G(r)). In particular, computing m = SOTP(m,G(r)) requires that each coefficient of m should
follow ψ, while preserving the message-hiding property. To achieve this, we set ψ as the centered binomial
distribution (CBD) ψk with k = 1, which is easily obtained by subtracting two uniformly random bits from
each other. For a polynomial degree n and hash function G : {0, 1}∗ → {0, 1}2n, m is chosen from the
message space M′ = {0, 1}n for an arbitrary distribution (with high min-entropy) and G(r) = y1||y2 ∈
{0, 1}n × {0, 1}n. SOTP then computes m̃ = (m ⊕ y1) − y2 by bitwise subtraction and assigns each
subtraction value of m̃ to the coefficient of m. By the one-time pad property, it is easily shown that m⊕ y1
becomes uniformly random in {0, 1}n (and thus message-hiding) and each coefficient of m follows ψ1.
Since r is also sampled from a hash value of m according to ψ1, all sampling distributions in NTRU+ are
easy to implement. We can also expect that, similar to the case of ψ1, the SOTP is expanded to sample a
centered binomial distribution reduced modulo 3 (i.e., ψ2) by summing up and subtracting more uniformly
random bits.

6

NTT-Friendly Rings Over Cyclotomic Trinomials. NTRU+ is instantiated over a polynomial ring Rq =
Zq[x]/⟨f(x)⟩, where f(x) = xn − xn/2 + 1 is a cyclotomic trinomial of degree n = 2i3j . [23] showed
that, with appropriate parameterization of n and q, such a ring can also provide NTT operation essentially
as fast as that over a ring Rq = Zq[x]/⟨xn + 1⟩. Moreover, because the choice of a cyclotomic trinomial
is moderate, it provides more flexibility to satisfy a certain level of security. Based on these results, we
choose four parameter sets for NTRU+, where the polynomial degree n of f(x) = xn − xn/2 + 1 is set to
be 576, 768, 864, and 1152, and the modulus q is 3457 for all cases. Table 7 lists the comparison results
between finalist NTRU [6], KYBER, KYBER-90s [25], and NTRU+ in terms of security and efficiency. To
estimate the concrete security level of NTRU+, we use the Lattice estimator [1] for the RLWE problem and
the NTRU estimator [6] for the NTRU problem, considering that all coefficients of each polynomial f ′, g,
r, and m are drawn according to the centered binomial distribution ψ1. The implementation results in Table
7 are estimated with reference and AVX2 optimizations. We can observe that NTRU+ outperforms NTRU
at a similar security level.

1.2 Related Works

The first-round NTRUEncrypt [26] submission to the NIST PQC standardization process was an NTRU-
based encryption scheme with the NAEP padding method [19]. Roughly speaking, NAEP is similar to our
SOTP, but the difference is that it does not completely encode m to prevent an adversary A from choosing
m maliciously. This is due to the fact that m := NAEP(m,G(hr)) is generated by subtracting two n-bit
stringsm and G(hr) from each other, i.e., m−G(hr) by bitwise subtraction, and then assigning them to the
coefficients of m. Since m can be maliciously chosen by A in NTRUEncrypt, m can also be maliciously
chosen, regardless of G(hr).

The finalist NTRU [6] was submitted as a key encapsulation mechanism (KEM) that provides four pa-
rameter sets for perfect correctness. To achieve chosen-ciphertext security, [6] relied on a variant of the SXY
[24] conversion, which also avoids re-encryption during decapsulation. Similar to NTRU+, the SXY variant
requires the rigidity [4] of an underlying scheme and uses the notion of deterministic public key encryption
(DPKE) where (m, r) are all recovered as a message during decryption. In the NTRU construction, the
recovery of r is conceptually the same as the existence of the randomness-recovery algorithm RRec. Instead
of removing re-encryption, the finalist NTRU needs to check whether (m, r) are selected correctly from
predefined distributions.

In 2019, Lyubashevsky et al. [23] proposed an efficient NTRU-based KEM called NTTRU by applying
NTT to the ring defined by a cyclotomic trinomial Zq[x]/⟨xn−xn/2+1⟩. NTTRU was based on the Dent [10]
transformation without any encoding method, which resulted in an approximate worst-case correctness error
of 2−13, even with an average-case error of 2−1230. To overcome this significant difference, NTTRU was
modified to reduce the message space of the underlying scheme, while increasing the size of the ciphertext.
This modification was later generalized to ACWC0 in [12].

In 2021, Duman et al. [12] proposed two generic transformations, ACWC0 and ACWC, which aim to
make the average-case correctness error of an underlying scheme nearly equal to the worst-case error of
the transformed scheme. Specifically, ACWC introduced GOTP as an encoding method to prevent A from
adversarially choosing m. While ACWC0 is simple, it requires a ciphertext expansion of 32 bytes. On
the other hand, ACWC does not requires an expansion of the ciphertext size. The security of ACWC0 and
ACWC was analyzed in both the classical and quantum random oracle models [12]. However, their NTRU
instantiation using ACWC has the drawback of requiring the message m to be chosen from a uniformly
random distribution overM′ = {−1, 0, 1}λ.

7

2 Preliminaries

2.1 Public Key Encryption and Related Properties

Definition 2.1 (Public Key Encryption). A public key encryption scheme PKE = (Gen, Enc, Dec) with a
message spaceM and a randomness spaceR consists of the following three algorithms:

• Gen(1λ): The key generation algorithm Gen is a randomized algorithm that takes a security parameter
1λ as input and outputs a pair of public/secret keys (pk, sk).

• Enc(pk,m): The encryption algorithm Enc is a randomized algorithm that takes a public key pk and a
message m ∈ M as input and outputs a ciphertext c. If necessary, we make the encryption algorithm
explicit by writing Enc(pk,m; r), where r ∈ R denotes the used randomness.

• Dec(sk, c): The decryption algorithm Dec is a deterministic algorithm that takes a secret key sk and
a ciphertext c as input and outputs a message m ∈M.

Correctness. We say that PKE has a (worst-case) correctness error δ [16] if

E
[
max
m∈M

Pr[Dec(sk,Enc(pk,m)) ̸= m]

]
≤ δ,

where the expectation is taken over (pk, sk) ← Gen(1λ) and the choice of the random oracles involved (if
any). We say that PKE has an average-case correctness error δ relative to the distribution ψM overM if

E [Pr [Dec(sk,Enc(pk,m)) ̸= m]] ≤ δ,

where the expectation is taken over (pk, sk)← Gen(1λ), the choice of the random oracles involved (if any),
and m← ψM.
Injectivity. [16, 5] We say that PKE is µ-injective if for all (pk, sk) ← Gen(1λ) and m,m′ ∈ M and
r, r′ ∈ R, we have that

Pr[c = c′ ∧ (m, r) ̸= (m′, r′) | c← Enc(pk,m; r) ∧ c′ ← Enc(pk,m′; r′)] ≤ µ,

where the probability is taken over c← Enc(pk,m; r) and c′ ← Enc(pk,m′; r′).
Spreadness. For (pk, sk)← Gen(1λ) and m ∈M, we define the min-entropy [13] of Enc(pk,m) as

γ(pk,m) := − logmax
c∈C

Pr
r←ψR

[c = Enc(pk,m; r)].

Then, we say that PKE is γ-spread [13] if for every key pair (pk, sk) ← Gen(1λ) and every message
m ∈M,

γ(pk,m) ≥ γ.

In particular, this implies that for every possible ciphertext c ∈ C, Prr←ψR [c = Enc(pk,m; r)] ≤ 2−γ .
Randomness Recoverability. We say that PKE is randomness-recoverable (RR) if there exists an algorithm
RRec such that for all (pk, sk)← Gen(1λ), m ∈M, and r ∈ R, we have that

Pr
[
∀m′ ∈ Prem(pk, c) : RRec(pk,m′, c) /∈ R ∨ Enc(pk,m′;RRec(pk,m′, c)) ̸= c|c← Enc(pk,m; r)

]
= 0,

8

where the probability is taken over c← Enc(pk,m; r) and Prem(pk, c) := {m ∈M| ∃ r ∈ R : Enc(pk,m; r)
= c}. Additionally, it is required that RRec returns⊥ if RRec(pk,m′, c) /∈ R or Enc(pk,m′;RRec(pk,m′, c)) ̸=
c.
Message Recoverability. We say that PKE is message-recoverable (MR) if there exists an algorithm MRec
such that for all (pk, sk)← Gen(1λ), m ∈M, and r ∈ R, we have that

Pr
[
∀r′ ∈ Prer(pk, c) : MRec(pk, r′, c) /∈M∨ Enc(pk,MRec(pk, r′, c); r′) ̸= c|c← Enc(pk,m; r)

]
= 0,

where the probability is taken over c← Enc(pk,m; r) and Prer(pk, c) := {r ∈ R|∃m ∈M : Enc(pk,m; r) =
c}. Additionally, it is required that MRec returns⊥ if MRec(pk, r′, c) /∈M or Enc(pk,MRec(pk, r′, c); r′) ̸=
c.
Rigidity. Under the assumption that PKE is RR, we say that PKE is δ-rigid if for all (pk, sk) ← Gen(1λ),
m ∈M, and r ∈ R, we have

Pr
[
Enc

(
pk,Dec(sk, c);RRec(pk,Dec(sk, c), c)

)
̸= c|c← Enc(pk,m; r)

]
≤ δ,

where the probability is taken over c← Enc(pk,m; r).

2.2 Security

Definition 2.2 (OW-CPA Security of PKE). Let PKE = (Gen, Enc, Dec) be a public key encryption scheme
with message space M. Onewayness under chosen-plaintext attacks (OW-CPA) for message distribution
ψM is defined via the game OW-CPA, which is shown in Figure 2, and the advantage function of adversary
A is

AdvOW-CPA
PKE (A) := Pr

[
OW-CPAAPKE ⇒ 1

]
.

Definition 2.3 (IND-CPA Security of PKE). Let PKE = (Gen, Enc, Dec) be a public key encryption scheme
with message space M. Indistinguishability under chosen-plaintext attacks (IND-CPA) is defined via the
game IND-CPA, as shown in Figure 2, and the advantage function of adversary A is

AdvIND-CPA
PKE (A) :=

∣∣∣∣Pr [IND-CPAAPKE ⇒ 1
]
− 1

2

∣∣∣∣ .
Game OW-CPA

1: (pk, sk)← Gen(1λ)
2: m← ψM
3: c∗ ← Enc(pk,m)
4: m′ ← A(pk, c∗)
5: return Jm = m′K

Game IND-CPA
1: (pk, sk)← Gen(1λ)
2: (m0,m1)← A0(pk)
3: b← {0, 1}
4: c∗ ← Enc(pk,mb)
5: b′ ← A1(pk, c

∗)
6: return Jb = b′K

Figure 2: Game OW-CPA and Game IND-CPA for PKE

9

2.3 Key Encapsulation Mechanism

Definition 2.4 (Key Encapsulation Mechanism). A key encapsulation mechanism KEM = (Gen, Encap,
Decap) with a key space K consists of the following three algorithms:

• Gen(1λ): The key generation algorithm Gen is a randomized algorithm that takes a security parameter
λ as input and outputs a pair of public key and secret key, (pk, sk).

• Encap(pk): The encapsulation algorithm Encap is a randomized algorithm that takes a public key pk
as input, and outputs a ciphertext c and a key K ∈ K.

• Decap(sk, c): The decryption algorithm Decap is a deterministic algorithm that takes a secret key sk
and ciphertext c as input, and outputs a key K ∈ K.

Correctness. We say that KEM has a correctness error δ if

Pr[Decap(sk, c) ̸= K|(c,K)← Encap(pk)] ≤ δ,

where the probability is taken over the randomness in Encap and (pk, sk)← Gen(1λ).

Definition 2.5 (IND-CCA Security of KEM). Let KEM = (Gen, Encap, Decap) be a key encapsulation
mechanism with a key space K. Indistinguishability under chosen-ciphertext attacks (IND-CCA) is defined
via the game IND-CCA, as shown in Figure 3, and the advantage function of adversary A is as follows:

AdvIND-CCA
KEM (A) :=

∣∣∣∣Pr [IND-CCAAKEM ⇒ 1
]
− 1

2

∣∣∣∣ .
Game IND-CCA

1: (pk, sk)← Gen(1λ)
2: (K0, c

∗)← Encap(pk)
3: K1 ← K
4: b← {0, 1}
5: b′ ← ADecap(pk, c∗,Kb)
6: return Jb = b′K

Decap(c ̸= c∗)

1: return Decap(sk, c)

Figure 3: Game IND-CCA for KEM

3 ACWC2 Transformation

We introduce our new ACWC transformation ACWC2 by describing ACWC2[PKE, SOTP,G] for a hash
function G, as shown in Figure 4. Let PKE′ = ACWC2[PKE, SOTP, G] be the resulting encryption scheme.
By applying ACWC2 to an underlying PKE, we prove that (1) PKE′ has a worst-case correctness error that
is essentially close to the average-case error of PKE, and (2) PKE′ is tightly IND-CPA secure if PKE is
OW-CPA secure.

10

3.1 SOTP

Definition 3.1. Function SOTP : X × U → Y is called a semi-generalized one-time pad (relative to
distributions ψU and ψY) if

1. Decoding: There exists an efficient algorithm Inv such that for all x ∈ X , u ∈ U , Inv(SOTP(x, u), u) =
x.

2. Message-hiding: For all x ∈ X , the random variable SOTP(x, u), for u ← ψU , has the same distri-
bution as ψY .

3. Rigid: For all u ∈ U and all y ∈ Y encoded with respect to u, it holds that SOTP(Inv(y, u), u) = y.

In contrast to the GOTP defined in [12], SOTP does not need to have an additional randomness-hiding
property, which requires that the output y = SOTP(x, u) follows the distribution ψY and simultaneously
does not leak any information about the randomness u. The absence of such an additional property allows
us to design SOTP more flexibly and efficiently than GOTP. Instead, SOTP is required to be δs-rigid,
which means that for all u ∈ U and all y ∈ Y encoded with respect to u, Inv(y, u) = x implies that
SOTP(x, u) = y, except with a probability of at most δs.

3.2 ACWC2

Let PKE = (Gen,Enc,Dec) be an underlying public key encryption scheme with message space M and
randomness space R, where a message M ∈ M and randomness r ∈ R are drawn from the distributions
ψM and ψR, respectively. Similarly, let PKE′ = (Gen′,Enc′,Dec′) be a transformed encryption scheme
with message space M′ and randomness space R′, where ψM′ and ψR′ are associated distributions. Let
SOTP :M′×U →M be a semi-generalized one-time pad for distributions ψU and ψM, and let G : R→ U
be a hash function such that every output is independently ψU -distributed. Assuming that R = R′ and
ψR = ψR′ , then PKE′ = ACWC2[PKE, SOTP,G] is described in Figure 4.

Gen′(1λ)

1: (pk, sk) := Gen(1λ)
2: return (pk, sk)

Enc′(pk,m ∈M′; r ← ψR)

1: M := SOTP(m,G(r))
2: c := Enc(pk,M ; r)
3: return c

Dec′(sk, c)

1: M := Dec(sk, c)
2: r := RRec(pk,M, c)
3: m := Inv(M,G(r))
4: return m

Figure 4: ACWC2[PKE, SOTP,G]

Under the condition that Dec(sk, c) in Dec′ yields the same M as in Enc, the deterministic RRec and
Inv functions do not affect the correctness error of PKE′. Thus, the factor that determines the success or
failure of Dec′(sk, c) is the result of Dec(sk, c) in Dec′. This means that the correctness error of PKE is
straightforwardly transferred to that of PKE′, and eventually determined by how randomness r ∈ R and
message M ∈ M are sampled in PKE′. We see that r is drawn according to the distribution ψR and M
is an SOTP-encoded element in M. Because every output of G is independently ψU -distributed, we can

11

expect that the message-hiding property of SOTP makes M follow the distribution ψM while hiding m.
Eventually, both M and r are chosen according to their respective initially-intended distributions.

However, since the choice of the random oracle G can affect the correctness error of PKE′, we need
to include this observation in the analysis of the correctness error. Theorem 3.2 shows that for all but a
negligible fraction of random oracles G, the worst-case correctness of PKE′ (transformed by ACWC2) is
close to the average-case correctness of PKE. This is the same idea as in ACWC, and the proof strategy of
Theorem 3.2 is essentially the same as that of [12] (Lemma 3.6 therein), except for slight modifications to
the message distribution.

Theorem 3.2 (Average-Case to Worst-Case Correctness error). Let PKE be RR and have a randomness
space R relative to the distribution ψR. Let SOTP : M′ × U → M be a semi-generalized one-time pad
(for distributions ψU , ψM), and let G : R→ ψU be a random oracle. If PKE is δ-average-case-correct, then
PKE′ := ACWC2[PKE, SOTP,G] is δ′-worst-case-correct for

δ′ = δ + ∥ψR∥ ·
(
1 +

√
(ln |M′| − ln∥ψR∥)/2

)
,

where ∥ψR∥ :=
√∑

r ψR(r)
2.

Proof. With the expectation over the choice of G and (pk, sk) ← Gen(1λ), the worst-case correctness of
the PKE′ is

δ′ = E
[
max
m∈M′

Pr[Dec′(sk,Enc′(pk,m)) ̸= m]

]
= E[δ′(pk, sk)],

where δ′(pk, sk) := E[maxm∈M′ Pr[Dec′(sk,Enc′(pk,m)) ̸= m] is the expectation taken over the choice
of G, for a fixed key pair (pk, sk). For any fixed key pair and any positive real t ∈ R+, we have

δ′(pk, sk) = E[max
m∈M′

Pr
[
Dec′(sk,Enc′(pk,m)) ̸= m]

]
≤ t+ Pr

G

[
max
m∈M′

Pr[Dec′(sk,Enc′(pk,m)) ̸= m] ≥ t
]

≤ t+ Pr
G

[
max
m∈M′

Pr
r
[Dec′(sk,Enc(pk, m̃); r) ̸= m] ≥ t

]
, (1)

where m̃ = SOTP(m,G(r)). Note that the first inequality holds by Lemma 3.3.
For any fixed key pair and any real c, let t(pk, sk) := µ(pk, sk) + ∥ψR∥ ·

√
(c+ ln |M′|)/2, where

µ(pk, sk) := PrM,r[Dec(sk,Enc(pk,M ; r)) ̸=M]. Then, we can use the helper Lemma 3.4 to argue that

Pr
G

[
max
m∈M′

Pr
r
[Dec′(sk,Enc(pk, m̃; r)) ̸= m] > t(pk, sk)

]
≤ e−c. (2)

To this end, we define g(m, r, u) and B as g(m, r, u) = (SOTP(m,u), r) and B = {(M, r) ∈
|Dec(sk,Enc(pk,M ; r)) ̸= M}, which will be used in Lemma 3.4. Note that Prr←ψR,u←ψU [g(m, r, u) ∈

12

B] = µ(pk, sk) holds for all m ∈M′ by the message-hiding property of the SOTP. For all m ∈M′,

Pr
r←ψR,u←ψU

[g(m, r, u) ∈ B]

= Pr
r←ψR,u←ψU

[(SOTP(m,u), r) ∈ B]

= Pr
r←ψR,M←ψM

[(M, r) ∈ B]

= Pr
r←ψR,M←ψM

[Dec(sk,Enc(pk,M ; r) ̸=M]

= µ(pk, sk).

Combining Equation (2) with Equation (1) and taking the expectation yields

δ′ ≤ E
[
µ(pk, sk) + ∥ψR∥ ·

√
(c+ ln |M′|)/2 + e−c

]
= δ + ∥ψR∥ ·

√
(c+ ln |M′|)/2 + e−c,

and setting c := − ln∥ψR∥ yields the claim in the theorem.

Lemma 3.3. Let X be a random variable and let f be a non-negative real-valued function with f(X) ≤ 1.
Then,

E[f(X)] ≤ t+ Pr[f(X) ≥ t]

for all positive real t ∈ R+.

Proof. By using the law of total probability and by partitioning all possible values of x into conditions
satisfying either f(x) < t or f(x) ≥ t, we can achieve the required inequality as follows:

E[f(X)] =
∑

f(x) Pr[X = x]

=
∑
f(x)<t

f(x) Pr[X = x] +
∑
f(x)≥t

f(x) Pr[X = x]

≤
∑
f(x)<t

tPr[X = x] +
∑
f(x)≥t

f(x) Pr[X = x]

≤ t+
∑
f(x)≥t

f(x) Pr[X = x]

≤ t+
∑
f(x)≥t

Pr[X = x] = t+ Pr[f(X) ≥ t]

The last equality can be checked by
∑

f(x)≥t Pr[X = x] = Pr[f(X) ≥ t].

Lemma 3.4 (Adapting Lemma 3.7 from [12]). Let g be a function, and B be some set such that

∀m ∈M′, Pr
r←ψR,u←ψU

[g(m, r, u) ∈ B] ≤ µ (3)

13

for some µ ∈ [0, 1]. Let G : R → U be a random function such that every output is independently ψU -

distributed. Define ∥ψR∥ =
√∑

r ψR(r)
2. Then, for all but an e−c fraction of random functions G, we

have that ∀m ∈M′,

Pr
r←ψR

[g(m, r,G(r)) ∈ B]

≤ µ+ ∥ψR∥ ·
√
(c+ ln |M′|)/2 (4)

for some positive c ∈ R+.

Proof. Let us fix a specific m ∈ M′, and for each r ∈ R, define pr := Pru←ψU [g(m, r, u) ∈ B]. By
the assumption of g in Equation (3), we know that

∑
r ψR(r)pr ≤ µ. For each r, define a random vari-

able Xr whose value is determined as follows: G chooses a random u = G(r) and then checks whether
g(m, r,G(r)) ∈ B; if it does, then we set Xr = 1; otherwise we set it to zero. Because G is a random
function, the probability that Xr = 1 is exactly pr.

The probability of Equation (4) for our particular m is the same as the sum
∑

r ψR(r)Xr, and we use
the Hoeffding bound to show that this value is not significantly larger than µ. We define the random variable
Yr = ψR(r)Xr. Notice that Yr ∈ [0, ψR(r)], and E[

∑
Yr] = E[

∑
r ψR(r)Xr] =

∑
r ψR(r)pr ≤ µ. By

the Hoeffding bound, we have for all positive t,

Pr[
∑
r

Yr > µ+ t] ≤ exp
(
−2t2∑
ψR(r)

2

)
= exp

(
−2t2

∥ψR∥2

)
. (5)

By setting t ≥ ∥ψ∥·
√
(c+ ln |M′|)/2, for a fixedm, Equation (4) holds for all but an e−c · |M′|−1 fraction

of random functions G. Applying the union bound yields the claim in the lemma.

Theorem 3.5 (OW-CPA of PKE ROM
=⇒ IND-CPA of ACWC2[PKE, SOTP,G]). Let PKE be a public key en-

cryption scheme with RR and MR properties and be µ-injective. For any adversary A against the IND-CPA
security of ACWC2[PKE, SOTP,G], making at most qG random oracle queries, there exists an adversary B
against the OW-CPA security of PKE with

AdvIND-CPA
ACWC2[PKE,SOTP,G](A) ≤ AdvOW-CPA

PKE (B) + µ,

where the running time of B is about Time(A) +O(qG).

Game G0

1: G← (R→ U)
2: (pk, sk)← Gen(1λ)
3: (m0,m1)← AG

0 (pk)
4: b← {0, 1}
5: r∗ ← ψR
6: M∗ = SOTP(mb,G(r

∗))
7: c∗ ← Enc(pk,M∗; r∗)
8: b′ ← AG

1 (pk, c
∗)

9: return Jb = b′K
Figure 5: Game G0 of Theorems 3.5 and 3.7

14

B(pk, c∗)
1: LG,Lr := ∅
2: b← {0, 1}
3: (m0,m1)← AG

0 (pk)
4: b′ ← AG

1 (pk, c
∗)

5: for r ∈ Lr do
6: M := MRec(pk, r, c∗)
7: if M ∈M
8: return M
9: return M ← ψM

G(r)

1: if ∃(r, u) ∈ LG
2: return u
3: else
4: u← ψU
5: LG := LG ∩ {(r, u)}
6: Lr := Lr ∩ {r}
7: return u

Figure 6: Adversary B for the proof of Theorem 3.5

Proof. We show that there exists an algorithm B (see Figure 6) which breaks the OW-CPA security of PKE
using an algorithm A = (A0,A1) that breaks the IND-CPA security of ACWC2[PKE, SOTP,G].
GAME G0. G0 (see Figure 5) is the original IND-CPA game with ACWC2[PKE, SOTP,G]. In G0, A is
given the challenge ciphertext c∗ := Enc(pk,M∗; r∗) for some unknown message M∗ and randomness r∗.
By the definition of the IND-CPA game, we have∣∣∣∣Pr[GA0 ⇒ 1]− 1

2

∣∣∣∣ = AdvIND-CPA
ACWC2[PKE,SOTP,G](A).

GAME G1. G1 is the same as G0, except that we abort G1 whenA queries two distinct r∗1 and r∗2 to G, such
that MRec(pk, r∗1, c

∗) and MRec(pk, r∗2, c
∗) ∈ M. This leads to breaking the injectivity of the PKE. Thus,

we have ∣∣Pr[GA1 ⇒ 1]− Pr[GA0 ⇒ 1]
∣∣ ≤ µ.

GAME G2. Let QUERY be an event that A queries G on r∗. G2 is the same as G1, except that we abort G2

in the QUERY event. In this case, we have∣∣Pr[GA2 ⇒ 1]− Pr[GA1 ⇒ 1]
∣∣ ≤ Pr[QUERY].

Unless QUERY occurs, G(r∗) is a uniformly random value that is independent of As view. In this case,
M∗ := SOTP(mb,G(r

∗)) does not leak any information about mb by the message-hiding property of the
SOTP, meaning that Pr[GA2 ⇒ 1] = 1/2. By contrast, if QUERY occurs, B (defined in Figure 6) can find
r∗ ∈ Lr such that c∗ := Enc(pk,M∗; r∗), using the algorithm MRec. Indeed, for each query r to G, B
checks whether MRec(pk, r, c∗) ∈ M. In the QUERY event, there exists M∗ := MRec(pk, r∗, c∗) ∈ M
which can be the solution to its challenge ciphertext c∗. It follows that

Pr[QUERY] ≤ AdvOW-CPA
PKE (B),

which concludes the proof.

Lemma 3.6 (Classical O2H, Theorem 3 from the eprint version of [3]). Let S ⊂ R be random. Let G and
F be random functions satisfying ∀r /∈ S : G(r) = F(r). Let z be a random classical value (S, G, F, z may
have an arbitrary joint distribution). Let C be a quantum oracle algorithm with query depth qG, expecting

15

Games G1-G5

1: G← (R→ U) // G1

2: r ←R
3: u := G(r) // G1

4: F← (R→ U) // G2-G5

5: u← ψU // G2-G5

6: G := F(r := u) // G2-G5

7: w ← CG(r, u) // G1-G2

8: w ← CF(r, u) // G3

9: T ← DF(r, u) // G4-G5

10: return w // G1-G3

11: return r ∈ T // G4-G5

CG(r, u)
1: (pk, sk)← Gen(1λ)
2: (m0,m1)← AG

0 (pk)
3: b← {0, 1} // G1-G4

4: M = SOTP(mb, u) // G1-G4

5: M ← ψM // G5

6: c∗ ← Enc(pk,M ; r)
7: b′ ← AG

1 (pk, c
∗)

8: return Jb = b′K
DF(r, u)

1: i← {1, · · · , qG}
2: Run CF(r, u) till i-th query
3: T ← measure F-query
4: return T

Figure 7: Games G1-G5 for the proof of Theorem 3.7

input z. Let D be the algorithm that, on input z, samples a uniform i from {1, ..., qG}, runs C right before its
i-th query to F, measures all query input registers, and outputs the set T of measurement outcomes. Then∣∣∣Pr[CG(z)⇒ 1]− Pr[CF(z)⇒ 1]

∣∣∣
≤ 2qG

√
Pr[S ∩ T ̸= ∅ : T ← DF(z)].

Theorem 3.7 (OW-CPA of PKE QROM
=⇒ IND-CPA of ACWC2[PKE, SOTP,G]). Let PKE be a public key

encryption scheme with RR and MR properties and be µ-injective. For any quantum adversary A against
the IND-CPA security of ACWC2[PKE, SOTP,G] with a query depth at most qG, there exists a quantum
adversary B against the OW-CPA security of PKE with

AdvIND-CPA
ACWC2[PKE,SOTP,G](A) ≤ 2qG

√
AdvOW-CPA

PKE (B) + µ,

and the running time of B is about that of A.

Proof. To prove this theorem, we use a sequence of games G0 to G7 defined in Figures 5, 7, and 8, and
Lemma 3.6. Before applying Lemma 3.6, we change G0 to G2. Subsequently, we apply Lemma 3.6 to G2

and G3. A detailed explanation of the security proof is provided in the following.
GAME G0. G0 (see Figure 5) is the original IND-CPA game with ACWC2[PKE, SOTP,G]. By definition,
we have ∣∣∣∣Pr[GA0 ⇒ 1]− 1

2

∣∣∣∣ = AdvIND-CPA
ACWC2[PKE,SOTP,G](A).

GAME G1. We define G1 by moving part of G0 inside an algorithm CG. In addition, we query u := G(r)
before algorithm CG runs adversary A. As the changes are only conceptual, we have

Pr[GA0 ⇒ 1] = Pr[GA1 ⇒ 1].

16

Game G6-G7

1: (pk, sk)← Gen(1λ)
2: r ← ψR
3: M ← ψM
4: c∗ ← Enc(pk,M ; r)
5: T ← E(pk, c∗) // G6

6: M ′ ← B(pk, c∗) // G7

7: return r ∈ T // G6

8: return JM =M ′K // G7

E(pk, c∗)
1: i← {1, · · · , qG}
2: Run until i-th F-query:
3: AF

1(pk)
4: AF

2(pk, c
∗)

5: T ←measure F-query
6: return T

B(pk, c∗)
1: T ← E(pk, c∗)
2: for r ∈ T do
3: if M = MRec(pk, r, c∗) ∈M
4: return M
5: return M ← ψM

Figure 8: Games G6-G7 for the proof of Theorem 3.7

GAME G2. We change the way G is defined in G2. Rather than choosing G uniformly, we choose F and
u uniformly and then set G := F(r := u). Here, G = F(r := u) is the same function as F, except that it
returns u on input r. Because the distributions of G and u remain unchanged, we have

Pr[GA1 ⇒ 1] = Pr[GA2 ⇒ 1].

GAME G3. We define G3 by providing function F to algorithm C instead of G. By applying Lemma 3.6
with C, S := {r}, and z := (r, u), we obtain the following:∣∣Pr[GA2 ⇒ 1]− Pr[GA3 ⇒ 1]

∣∣ ≤ 2qG
√

Pr[G4 ⇒ 1].

In addition, since the uniformly random value u is only used in the SOTP(mb, u), by the message-hiding
property of the SOTP, M is independent of mb. Thus, b = b′ with a probability of 1/2. Therefore,

Pr[GA3 ⇒ 1] =
1

2
.

GAME G4 and G5. We define G4 according to Lemma 3.6. In addition, we define G5 by changing the way
M is calculated. Instead of computing M = SOTP(mb, u), we sample M ← ψM. By contrast, in G4,
since u is sampled from ψU and used only for computing SOTP(mb, u), the message-hiding property of
SOTP shows that M = SOTP(mb, u) follows the distribution ψM. Therefore,

Pr[GA4 ⇒ 1] = Pr[GA5 ⇒ 1].

GAME G6. We define G6 by rearranging G5, as shown in Figure 8. As the changes are only conceptual, we
have

Pr[GA5 ⇒ 1] = Pr[GA6 ⇒ 1].

GAME G7. G7 is defined by Algorithm B, as shown in Figure 8, moving from G6. G7 is the same as G6,
except for the case in which there are two distinct r, r′ ∈ T such that MRec(pk, r, c∗), MRec(pk, r′, c∗) ∈
M. If this occurs, the injectivity of PKE is broken. Thus, we have∣∣Pr[GA6 ⇒ 1]− Pr[GA7 ⇒ 1]

∣∣ ≤ µ.
17

We can observe that in G7, B wins if there exists r ∈ T such that m∗ := MRec(pk, r, c∗) ∈ M, as the
solution of its challenge ciphertext c∗. Therefore, we have

AdvOW-CPA
PKE (B) = Pr[GA7 ⇒ 1].

Combining all (in)equalities and bounds, we have

AdvIND-CPA
ACWC2[PKE,SOTP,G](A) ≤ 2qG

√
AdvOW-CPA

PKE (B) + µ,

which concludes the proof.

Lemma 3.8. If PKE is γ-spread, then so is PKE′ = ACWC2[PKE, SOTP,G].

Proof. For a fixed key pair (pk, sk) and a fixed m (with respect to PKE′), we consider the probabil-
ity that Prr←ψR [c = Enc′(pk,m; r)] for every possible ciphertext c. Whenever r ← ψR, the equation
c = Enc′(pk,m; r) is equivalently transformed into c = Enc(pk,M ; r), where M = SOTP(m,G(r)) is
a message and c is a possible ciphertext with respect to PKE. Since PKE is γ-spread, we observe that
Prr←ψR [c = Enc(pk,M ; r)] ≤ 2−γ , which yields Prr←ψR [c = Enc′(pk,m; r)] ≤ 2−γ . By averaging over
(pk, sk) and m ∈M′, the proof is completed.

4 IND-CCA Secure KEM from ACWC2

4.1 FO Transform with Re-encryption

One can apply the Fujisaki-Okamoto transformation FO⊥ to the IND-CPA secure PKE′, as shown in Fig-
ure 4, to obtain an IND-CCA secure KEM. Figure 9 shows the resultant KEM := FO⊥[PKE′,H] =
(Gen,Encap,Decap), where H is a hash function (modeled as a random oracle). Regarding the correct-
ness error of KEM, KEM preserves the worst-case correctness error of PKE′, as Decap works correctly as
long as Dec′ is performed correctly. Regarding the IND-CCA security of KEM, we can use the previous
results [16] and [11], which are stated in Theorems 4.1 and 4.2, respectively. By combining these results
with Theorems 3.5 and 3.7, we can achieve the IND-CCA security of KEM in the classical/quantum random
oracle model. In the case of the quantum random oracle model (QROM), we need to further use the fact that
IND-CPA generically implies OW-CPA.

Gen(1λ)

1: (pk, sk) := Gen′(1λ)
2: return (pk, sk)

Encap(pk)

1: m←M
2: (r,K) := H(m)
3: c := Enc′(pk,m; r)

- M := SOTP(m,G(r))
- c := Enc(pk,M ; r)

4: return (K, c)

Decap(sk, c)

1: m′ := Dec′(sk, c)
- M ′ = Dec(sk, c)
- r′ = RRec(pk,M ′, c)
- m′ = Inv(M ′,G(r′))

2: (r′′,K ′) := H(m′)

3: if m′ =⊥ or c ̸= Enc′(pk,m′; r′′)

4: return ⊥
5: else
6: return K ′

Figure 9: KEM = FO⊥[PKE′,H]

18

Theorem 4.1 (IND-CPA of PKE′
ROM
=⇒ IND-CCA of KEM [16]). Let PKE′ be a public key encryption

scheme with a message spaceM. Let PKE′ has (worst-case) correctness error δ and is (weakly) γ-spread.
For any adversary A making at most qD decapsulation and qH hash queries, against the IND-CCA security
of KEM, there exists an adversary B against the IND-CPA security of PKE′ with

AdvIND-CCA
KEM (A) ≤ 2(AdvIND-CPA

PKE′ (B) + qH
|M|

) + qD2
−γ + qHδ,

where the running time of B is about that of A.

Theorem 4.2 (OW-CPA of PKE′ QROM
=⇒ IND-CCA of KEM [11]). Let PKE′ have (worst-case) correctness

error δ and be (weakly) γ-spread. For any quantum adversary A, making at most qD decapsulation and qH
(quantum) hash queries against the IND-CCA security of KEM, there exists a quantum adversary B against
the OW-CPA security of PKE′ with

AdvIND-CCA
KEM (A) ≤2q

√
AdvOW-CPA

PKE′ (B)

+ 24q2
√
δ + 24q

√
qqD · 2−γ/4,

where q := 2(qH + qD) and Time(B) ≈ Time(A) +O(qH · qD · Time(Enc) + q2).

4.2 FO-Equivalent Transform Without Re-encryption

The aforementioned FO⊥ requires the Decap algorithm to perform re-encryption to check if ciphertext
c is well-formed. Using m′ as the result of Dec′(sk, c), a new randomness r′′ is obtained from H(m′),
and Enc′(pk,m′; r′′) is computed and compared with the (decrypted) ciphertext c. However, even if m′

is the same as m used in Encap, it does not guarantee that Enc′(pk,m′; r′′) = c without performing re-
encryption. In other words, there could exist many other ciphertexts {ci} (including c as one of them),
all of which are decrypted into the same m′ but generated with distinct randomness {r′′}. In FO⊥ (and
other FO transformations), there is still no way to find the same c (honestly) generated in Encap other
than by comparing Enc′(pk,m′; r′′) and c. In the context of chosen-ciphertext attacks, it is well known
that decapsulation queries using {ci} can leak information on sk, particularly in lattice-based encryption
schemes.

Gen(1λ)

1: (pk, sk) := Gen′(1λ)
2: return (pk, sk)

Encap(pk)

1: m←M
2: (r,K) := H(m)
3: c := Enc′(pk,m; r)

- M := SOTP(m,G(r))
- c := Enc(pk,M ; r)

4: return (K, c)

Decap(sk, c)

1: m′ := Dec′(sk, c)
- M ′ = Dec(sk, c)
- r′ = RRec(pk,M ′, c)
- m′ = Inv(M ′,G(r′))

2: (r′′,K ′) := H(m′)

3: if m′ =⊥ or r′ ̸= r′′

4: return ⊥
5: else
6: return K ′

Figure 10: KEM = FO
⊥
[PKE′,H]

19

However, we demonstrate that FO⊥ based on ACWC2 can eliminate the need for ciphertext comparison
c = Enc′(pk,m′; r′′) in Decap, and instead replace it with a simpler and more efficient comparison r′ = r′′.
We denote the new FO⊥ based on ACWC2 as FO

⊥
, as shown in Figure 10. In FO

⊥
, r′ and r′′ are values

generated during the execution of Decap, where r′ is the output of RRec(pk,M ′, c) and r′′ is computed from
H(m′). The only change compared to FO⊥ in Figure 9 is the boxed area, replacing c ̸= Enc′(pk,m′; r′′)
with r′ ̸= r′′, while the remaining parts remain the same. By proving that the equality c = Enc′(pk,m′; r′′)

is equivalent to the equality r′ = r′′, we can show that both FO⊥ and FO
⊥

work identically and achieve the
same level of IND-CCA security.

Lemma 4.3. Let PKE′ be µ′-injective and PKE be µ-injective, and let PKE be δ-rigid and SOTP be δs-
rigid. Then, with probability at least 1 − (µ′ + µ + δ + δs), c = Enc′(pk,m′; r′′) in FO⊥ if and only if
r′ = r′′ in FO

⊥
.

Proof. For the sake of simplicity, we assume that events that break injectivity and rigidity never occurs.
Assume that c = Enc′(pk,m′; r′′) holds in the Decap of FO⊥. Because PKE′ is injective, the pair

(m, r) used in Encap is the same as (m′, r′′). Therefore, ciphertext c generated by Encap is expressed
as c = Enc(pk, SOTP(m′,G(r′′)); r′′). Furthermore, because PKE is rigid, for a ciphertext c given to
Decap, the two equations M ′ = Dec(sk, c) and r′ = RRec(pk,M ′, c) lead to Enc(pk,Dec(sk, c); r′) =
c. In addition, because of the rigidity of the SOTP, the equation m′ = Inv(M ′,G(r′)) implies M ′ =
SOTP(m′,G(r′)). Thus, using Dec(sk, c) = M ′ = SOTP(m′,G(r′)), we can express the ciphertext c in
Decap as Enc(pk, SOTP(m′,G(r′)); r′) = c. We now have two equations with respect to c generated by
Enc. Because PKE is also injective, we observe that SOTP(m′,G(r′)) = SOTP(m′,G(r′′)), and r′ = r′′,
as required.

Conversely, assume that r′ = r′′ holds in the Decap of FO
⊥

. The rigidity of the SOTP means
that m′ = Inv(M ′,G(r′)) implies M ′ = SOTP(m′,G(r′)), and thus M ′ = SOTP(m′,G(r′′)). Also, the
rigidity of PKE means that for a ciphertext c given to Decap, the two equations M ′ = Dec(sk, c) and
r′ = RRec(pk,M ′, c) lead to Enc(pk,Dec(sk, c); r′) = c and thus Enc(pk,Dec(sk, c); r′′) = c. Be-
cause Dec(sk, c) = M ′ = SOTP(m′,G(r′′)), we see that Enc(pk, SOTP(m′,G(r′′)); r′′) = c. Then,
Enc(pk, SOTP(m′,G(r′′)); r′′) can be expressed as Enc′(pk,m′; r′′), which implies Enc′(pk,m′; r′′) =
c.

5 GenNTRU[ψn1] (=PKE)

5.1 Notations

5.1.1 Centered Binomial Distribution ψk

The Centered Binomial Distribution (CBD) ψk is a distribution over Z, defined as follows:

• b1, · · · , bk ← {0, 1}, b′1, · · · , b′k ← {0, 1}.

• Return
∑k

i=1 (bi − b′i).

Hereafter, in our NTRU construction, we use ψ1 over the set {−1, 0, 1}. For a positive integer n, the
distribution ψn1 is defined over the set {−1, 0, 1}n, where each element is selected according to ψ1.

20

Gen(1λ)

1: f ′,g← ψn1
2: f = 3f ′ + 1
3: if f , g is not invertible in Rq
4: restart
5: h = 3gf−1

6: return (pk, sk) = (h, f)

Enc(h,m← ψn1 ; r← ψn1)

1: return c = hr+m

Dec(f , c)

1: return m = (cf mod q) mod 3

RRec(h,m, c)

1: return r = (c−m)h−1

MRec(h, r, c)

1: return m = c− hr

Figure 11: GenNTRU[ψn1] with average-case correctness error

5.1.2 Other Notations

Let Rq := Zq[x]/⟨xn − xn/2 + 1⟩ be a ring, where q is a modulus and n = 2i3j for some positive integers
i and j. For a polynomial f ∈ Rq, we use the notation ‘f ← ψn1 ’ to represent that each coefficient of f is
drawn according to the distribution ψ1. In addition, we use the notation ‘h← Rq’ to show that polynomial
h is chosen uniformly at random fromRq. Let U be a uniformly random distribution over {0, 1}. We denote
U ℓ as the uniformly random distribution over the set {0, 1}ℓ. We use the notation ‘u ← U ℓ’ to represent
that each bit of u is drawn according to the distribution U . Let a and q be positive integers, and q be an
odd integer. We denote y = a mod q as the unique integer y ∈ {−(q − 1)/2, · · · , (q − 1)/2} that satisfies
q|x− a.

5.2 Description of GenNTRU[ψn1]

Figure 11 defines GenNTRU[ψn1] relative to the distribution ψn1 over Rq. Since GenNTRU[ψn1] should be
MR and RR for our ACWC2, Figure 11 shows two additional algorithms RRec and MRec.

We notice that RRec(h,m, c) is necessary for performing ACWC2 where r should be recovered from
c once m is obtained. The RR property guarantees that such a randomness-recovery process works well,
because for a ciphertext c = Enc(h,m, r)= hr+m we see that RRec(h,m, c) = (c−m)h−1 = r ∈ R.
On the other hand, MRec(h, r, c) is only used for proving IND-CPA security of the ACWC2-transformed
scheme. The security analysis requires that for a challenge ciphertext c∗ = Enc(h,m∗, r∗)= hr∗ +m∗ the
algorithm MRec(h, r∗, c∗) returns the corresponding message m∗ if a queried r∗ was used for c∗. The MR
property guarantees that once r∗ is given, MRec(h, r∗, c∗) = c∗ − hr∗ = m∗ ∈M.

5.3 Security and Other Properties

5.3.1 Cryptographic Assumptions

Definition 5.1 (The NTRU problem). Let ψ be a distribution over Rq. The NTRU problem NTRUn,q,ψ is
to distinguish h = g(pf ′ + 1)−1 ∈ Rq from u ∈ Rq, where f ′,g ← ψ and u ← Rq. The advantage of
adversary A in solving NTRUn,q,ψ is defined as follows:

AdvNTRUn,q,ψ (A) = Pr[A(h) = 1]− Pr[A(u) = 1].

Definition 5.2 (The RLWE problem). Let ψ be a distribution over Rq. The RLWE problem RLWEn,q,ψ is
to find s from (a,b = as+ e) ∈ Rq ×Rq, where a← Rq, s, e← ψ. The advantage of an adversary A in

21

solving RLWEn,q,ψ is defined as follows:

AdvRLWE
n,q,ψ (A) = Pr[A(a,b) = s].

5.3.2 Security Proofs

Theorem 5.3 (OW-CPA security of GenNTRU[ψn1]). For any adversary A, there exist adversaries B and C
such that

AdvOW-CPA
GenNTRU[ψn

1]
(A) ≤ AdvNTRUn,q,ψn

1
(B) + AdvRLWE

n,q,ψn
1
(C).

Proof. We complete our proof through a sequence of games G0 to G1. Let A be the adversary against the
OW-CPA security experiment.
GAME G0. In G0, we have the original OW-CPA game with GenNTRU[ψn1]. By the definition of the
advantage function of the adversary A against the OW-CPA game, we have that

AdvOW-CPA
GenNTRU[ψn

1]
(A) = Pr[GA0 ⇒ 1].

GAME G1. In G1, the public key h in Gen is replaced by h ← Rq. Therefore, distinguishing G1 from G0

is equivalent to solving the NTRUn,q,ψn
1

problem. More precisely, there exists an adversary B with the same
running time as that of A such that∣∣Pr[GA0 ⇒ 1]− Pr[GA1 ⇒ 1]

∣∣ ≤ AdvNTRUn,q,ψn
1
(B).

Since h ← Rq is now changed to a uniformly random polynomial from Rq, G1 is equivalent to solving an
RLWEn,q,ψn

1
problem. Therefore,

Pr[GA1 ⇒ 1] = AdvRLWE
n,q,ψn

1
(C).

Combining all the probabilities completes the proof.

Lemma 5.4 (Spreadness). GenNTRU[ψn1] is n-spread.

Proof. For a fixed message m and ciphertext c, there exists at most one r such that c = Enc(h,m; r).
Suppose there exist r1 and r2 such that c = Enc(h,m; r1) = Enc(h,m; r2). Based on this assumption,
hr1+m = hr2+m holds. By subtracting m and multiplying h−1 on both sides of the equation, we obtain
r = r′. Therefore, there exists at most one r such that c = Enc(h,m; r).

For fixed m, to maximize Pr[Enc(h,m; r) = c], we need to choose c such that c = Enc(h,m; r) for
r = 0. Since there exists only one r such that c = Enc(h,m; r), we have Pr[Enc(h,m; r) = c] = 2−n.
Since this holds for any (pk, sk)← Gen(1λ) and m ∈M, GenNTRU[ψn1] is n-spread.

5.3.3 Average-Case Correctness Error

We analyze the average-case correctness error δ relative to the distribution ψM = ψR = ψn1 using the
template provided in [23]. We can expand cf in the decryption algorithm as follows:

cf = (hr+m)f = (3gf−1r+m)(3f ′ + 1) = 3(gr+mf ′) +m.

22

For a polynomial p in Rq, let pi be the i-th coefficient of p, and |pi| be the absolute value of pi. Then,
((cf)i mod q) mod 3 = mi if the following inequality holds:∣∣3(gr+mf ′) +m

∣∣
i
≤ q − 1

2
,

where all coefficients of each polynomial are distributed according to ψn1 . Let ϵi be

ϵi = Pr

[∣∣3(gr+mf ′) +m
∣∣
i
≤ q − 1

2

]
.

Then, assuming that each coefficient is independent,

Pr [Dec(sk,Enc(pk,m)) ̸= m] = 1−
n−1∏
i=0

ϵi. (6)

Because the coefficients of m have a size at most one,

ϵi = Pr

[∣∣3(gr+mf ′) +m
∣∣
i
≤ q − 1

2

]
≥ Pr

[∣∣3(gr+mf ′)
∣∣
i
+ |m|i ≤

q − 1

2

]
≥ Pr

[∣∣3(gr+mf ′)
∣∣
i
+ 1 ≤ q − 1

2

]
= Pr

[∣∣gr+mf ′
∣∣
i
≤ q − 3

6

]
:= ϵ′i.

Therefore,

Pr [Dec(sk,Enc(pk,m)) ̸= m] = 1−
n∏
i=0

ϵi ≤ 1−
n∏
i=0

ϵ′i := δ.

Now, we analyze ϵ′i = Pr
[
|gr+mf ′|i ≤

q−3
6

]
. To achieve this, we need to analyze the distribution of

gr+mf ′. By following the analysis in [23], we can check that for i ∈ [n/2, n], the degree-i coefficient of
gr+mf ′ is the sum of n independent random variables:

c = ba+ b′(a+ a′) ∈ {0,±1,±2,±3}, where a, b, a, b← ψ1. (7)

Additionally, for i ∈ [0, n/2−1], the degree-i coefficient of gr+mf ′ is the sum of n−2i random variables
c (as in Equation (7)), and 2i independent random variables c′ of the form:

c′ = ba+ b′a′ ∈ {0,±1,±2} where a, b, a′, b′ ← ψ1. (8)

Computing the probability distribution of this sum can be done via a convolution (i.e. polynomial multipli-
cation). Define the polynomial:

ρi(X) =


∑3n

j=−3n ρi,jX
j =

(∑3
j=−3 θjX

j
)n

for i = [n/2, n− 1],∑3n−2i
j=−(3n−2i) ρi,jX

j =
(∑3

j=−3 θjX
j
)n−2i(∑2

j=−2 θ
′
jX

j
)2i

for i = [0, n/2− 1],
(9)

23

±3 ±2 ±1 0

1/128 1/32 23/128 9/16

Table 3: Probability distribution of c = ab+b′(a+a′)

±2 ±1 0

1/64 3/16 19/32

Table 4: Probability distribution of c′ = ab+ a′b′

where θj = Pr [c = j] (distribution is shown in Table 3) and θ′j = Pr [c′ = j] (distribution is shown in Table
4). Let ρi,j be the probability that the degree-i coefficient of gr+mf ′ is j. Then, ϵ′i can be computed as:

ϵ′i =

{
2 ·

∑3n
j=(q+3)/6 ρi,j for i ∈ [n/2, n− 1] ,

2 ·
∑3n−2i

j=(q+3)/6 ρi,j for i ∈ [0, n/2− 1] ,

where we used the symmetry ρi,j = ρi,−j . Putting ϵ′i into Equation (6), we compute the average-case
correctness error δ of GenNTRU[ψn1].

5.3.4 Injectivity and rigidity

The injectivity of GenNTRU[ψn1] can be easily shown as follows: if there exist two inputs (m1, r1) and
(m2, r2) such that Enc(h,m1; r1) = Enc(h,m2; r2), the equality indicates that (r1−r2)h+(m1−m2) =
0, where r1 − r2 and m1 −m2 still have small coefficients of length, at most 2

√
n. For a lattice set

L⊥0 := {(v,w) ∈ Rq ×Rq : hv +w = 0 (in Rq)},

(r1−r2,m1−m2) becomes an approximate shortest vector in L⊥0 . Thus, if the injectivity is broken against
GenNTRU[ψn1], we can solve the approximate shortest vector problem (SVP) (of length at most 2

√
n) over

L⊥0 . It is well-known [12] that the approximate SVP over L⊥0 is at least as hard as the NTRUn,q,ψn
1

problem
(defined above). Hence, if the NTRUn,q,ψn

1
assumption holds, then the injectivity of GenNTRU[ψn1] also

holds.
Furthermore, under the assumption that GenNTRU[ψn1] is µ-injective, it is easy to show that GenNTRU[ψn1]

is µ-rigid, because the injectivity guarantees that decrypting c = hr +m yields the same m, and thus the
same r via the deterministic RRec shown in Figure 11.

6 NTRU+

6.1 Instantiation of SOTP

We introduce SOTP :M′ × U →M, whereM′ = {0, 1}n, U = {0, 1}2n, andM = {−1, 0, 1}n relative
to distributions ψU = U2n and ψM = ψn1 . Figure 12 shows SOTP used for ACWC2. We notice that,
following [21], the values of y+u2 generated by the Inv algorithm should be checked to determine whether
they are 0 or 1.

SOTP(x ∈M′, u← U2n)

1: u = (u1, u2) ∈ {0, 1}n × {0, 1}n
2: y = (x⊕ u1)− u2 ∈ {−1, 0, 1}n
3: return y

Inv(y ∈M, u ∈ U2n)

1: u = (u1, u2) ∈ {0, 1}n × {0, 1}n
2: if y + u2 /∈ {0, 1}n, return ⊥
3: x = (y + u2)⊕ u1 ∈ {0, 1}n
4: return x

Figure 12: SOTP instantiation for NTRU+

24

Message-Hiding and Rigidity Properties of SOTP. It is easily shown that SOTP is message-hiding
because of the one-time pad property, particularly for part x⊕ u1. That is, unless u1 is known, the message
x ∈M′ is unconditionally hidden from y ∈M. Similarly, x⊕u1 becomes uniformly random over {0, 1}n,
regardless of the message distribution ψM′ , and thus the resulting y follows ψn1 . In addition, the rigidity of
the SOTP is trivial because Inv(y, u) = x implies that SOTP(x, u) = y.

6.2 CPA-NTRU+ (=PKE ′)

We obtain CPA-NTRU+ := ACWC2 [GenNTRU [ψn1],SOTP, G] by applying ACWC2 from Section 3 to
GenNTRU[ψn1]. Because the underlying GenNTRU[ψn1] provides injectivity, MR, and RR properties, The-
orems 3.5 and 3.7 provide us with the IND-CPA security of the resulting CPA-NTRU+ in the classical and
quantum random oracle models, respectively. Regarding the correctness error, Theorem 3.2 shows that the
worst-case correctness error of CPA-NTRU+ and the average-case correctness error of GenNTRU[ψn1] dif-

fer by the amount of ∆ = ∥ψR∥
(
1 +

√
(ln |M′| − ln∥ψR∥)/2

)
, where ψR andM′ are specified by ψn1

and {0, 1}n, respectively. For instance, when n = 768, we obtain about ∆ = 2−1083.

Gen′(1λ)

1: (pk, sk) := GenNTRU[ψn1].Gen(1
λ)

- f ′,g← ψn1
- f = 3f ′ + 1
- if f , g are not invertible in Rq, restart
- (pk, sk) = (h = 3gf−1 mod q, f)

2: return (pk, sk)

Enc′(pk,m ∈ {0, 1}n; r← ψn1)

1: m = SOTP(m,G(r))
2: c = GenNTRU[ψn1].Enc(pk,m; r)

- c = hr+m
3: return c

Dec′(sk, c)

1: m = GenNTRU[ψn1].Dec(sk, c)
- m = (cf mod q) mod 3

2: r = RRec(pk, c,m)
- r = (c−m)h−1

3: m = Inv(m,G(r))
4: return m

Figure 13: CPA-NTRU+

Spreadness and Injectivity Properties of CPA-NTRU+. To achieve IND-CCA security of the transformed
KEM via FO

⊥
, we need to show the spreadness and injectivity of CPA-NTRU+. The spreadness can be

easily obtained by combining Lemma 3.8 with Lemma 5.4. Next, the injectivity of CPA-NTRU+ can also
be proven under the assumption that the NTRUn,q,ψn

1
problem is infeasible, analogous to GenNTRU[ψn1].

Specifically, if there exist two distinct pairs (m1, r1) and (m2, r2) such that Enc′(pk,m1; r1) = Enc′(pk,m2; r2),
this results in the equation hr1+m1 = hr2+m2, where m1 = SOTP(m1,G(r1)) and m2 = SOTP(m2,G(r2)).
In this case, we have two short polynomials: r1 − r2 and m1 −m2, which can be a solution of the approxi-
mate SVP (of length at most 2

√
n) over L⊥0 .

6.3 NTRU+ (=KEM)

Finally, we achieve IND-CCA secure KEM by applying FO
⊥

to CPA-NTRU+. We denote such KEM by
NTRU+ := FO

⊥
[CPA-NTRU+,H]. Figure 14 shows the resultant NTRU+, which is the basis of our

implementation in the next section. By combining Theorems 4.1, 4.2, and Lemma 4.3, we can achieve

25

IND-CCA security of NTRU+. As for the correctness error, NTRU+ preserves the worst-case correctness
error of the underlying CPA-NTRU+.

Gen(1λ)

1: f ′,g← ψn1
2: f = 3f ′ + 1
3: if f , g are not invertible in Rq, restart
4: return (pk, sk) = (h = 3gf−1, f)

Encap(pk)

1: m← {0, 1}n
2: (r,K) = H(m)
3: m = SOTP(m,G(r))
4: c = hr+m
5: return (c,K)

Decap(sk, c)

1: m = (cf mod q) mod 3
2: r = (c−m)h−1

3: m = Inv(m,G(r))
4: (r′,K) = H(m)
5: if r = r′

6: return K
7: else
8: return ⊥

Figure 14: NTRU+

7 Algorithm Specification

7.1 Preliminaries and notation

Symmetric primitives. NTRU+ uses three different hash functions: F, G, and H. To instantiate these
functions, we use the hash functions SHA256 and SHA512, and we use AES256-CTR with nonce 0 as an
extendable output function (XOF). Algorithms 1, 2, and 3 describe the details of F, G, and H.

Algorithm 1 F

Require: Byte array m = (m0,m1, · · · ,m3n/2−1)
Ensure: Byte array B = (b0, b1, · · · , b31)

1: (b0, · · · , b31) := SHA256((0,m0,m1, · · · ,m3n/2−1), 3n/2 + 1);
2: return (b0, · · · b31)

Algorithm 2 G

Require: Byte array m = (m0,m1, · · · ,mn/8−1)
Ensure: Byte array B = (b0, b1, · · · , bn/8+31)

1: (b0, · · · , b31) := SHA256((1,m0,m1, · · · ,mn/8−1), n/8 + 1);
2: (b0, · · · bn/8−1) = XOF((b0, · · · , b31), n/4)
3: return (b0, · · · bn/8−1)

Algorithm 3 H

Require: Byte array m = (m0,m1, · · · ,mn/8−1)
Ensure: Byte array B = (b0, b1, · · · , bn/8+31)

1: (b0, · · · , b31, b32, · · · b63) := SHA512(m,n/8);
2: (b32, · · · bn/8+31) = XOF((b32, · · · , b63), n/4)
3: return (b0, · · · bn/8+31)

26

n q
Radix-2 for

cyclotomic trinomial
Radix-3 Radix-2 d ζ ℓ = 3n/d

576 3457 1 1 5 3 361 576
768 3457 1 1 6 2 19 1152
864 3457 1 2 4 3 9 864
1152 3457 1 1 6 3 19 1152

w : primitive ℓ-th root of unity modulo q

Table 5: Combinations of NTT layers

Modular reductions. Let a and q be positive integers, where q is an odd integer. We denote y = a mod q
as the unique integer y in the set {0, 1, . . . , q − 1} such that q divides x − a. Additionally, we denote
y = a mod±q as the unique integer y in the set {−(q − 1)/2, · · · , (q − 1)/2} such that q divides x− a.
Polynomial rings and Number Theoretic Transform. We define two quotient rings: R = Z[x]/⟨xn −
xn/2 + 1⟩ and Rq = Zq[x]/⟨xn − xn/2 + 1⟩, where n = 2a3b with a, b ∈ N ∪ {0} such that xn − xn/2 + 1
is the 3n-th cyclotomic polynomial. To efficiently perform computations within the ring Rq, we reduce
the computations to the product of smaller rings, denoted as

∏n/d−1
i=0 Zq[x]/⟨xd − ζi⟩, using the Number

Theoretic Transform (NTT). To implement NTT efficiently, we combine three different NTT layers in the
following sequence: Radix-2 NTT layer for the cyclotomic trinomial, Radix-3 NTT layer, and then Radix-2
NTT layer5. The initial Radix-2 NTT layer for the cyclotomic trinomial, as introduced by [23], establishes
a ring isomorphism from Zq[x]/⟨xn−xn/2+1⟩ to the product ring Zq[x]/⟨xn/2− ζ⟩×Zq[x]/⟨xn/2− ζ5⟩,
where ζ denotes a primitive sixth root of unity modulo q. Subsequently, we use Radix-3 NTT layers to
establish isomorphisms from Zq[x]/⟨xn−α3⟩ to the product ring Zq[x]/⟨xn/3−α⟩×Zq[x]/⟨xn/3−αω⟩×
Zq[x]/⟨xn/3 − αω2⟩, where ω denotes a primitive third root of unity modulo q. In the final step, we use
Radix-2 NTT layers to establish isomorphisms from Zq[x]/⟨xn − ζ2⟩ to the product ring Zq[x]/⟨xn/2 −
ζ⟩ × Zq[x]/⟨xn/2 + ζ⟩. Table 5 presents comprehensive information, including the number of applied NTT
layers and the resulting degree d of component rings in the product rings for various parameter sets. Note
that, for the successful implementation of NTT, it requires a primitive ℓ-th root of unity ζ modulo q, where
ℓ = 3n/d. The values of ℓ and ζ for each parameter are also included in Table 5.

Considering efficient implementation of the NTT, we assume the use of an in-place implementation that
does not require reordering of the output values. For clarity, we define NTT as follows:

f̂ = NTT(f) = (f mod xd − ζindex[0], · · · , f mod xd − ζindex[n/d−1])

= (
d−1∑
i=0

f̂ix
i,
d−1∑
i=0

f̂3+ix
i, · · · ,

d−1∑
i=0

f̂n−d+ix
i) = (f̂0, f̂1, · · · , f̂n−1)

where the array index is defined in Figure 15. In this document, we denote NTT as the number theoretic
transform function and NTT−1 as the inverse number theoretic transform function.
Multiplication in NTT domain. After we transform polynomials in Rq into elements of the product rings,
multiplication must be performed in each component ring Zq[x]/

〈
xd − ζi

〉
. In the case of d = 2, multipli-

cation is carried out as follows:

c(x) = a(x)b(x) = (a0b0 + a1b1ζi) + (a0b1 + a1b0)x

5We choose to use Radix-3 NTT layers before Radix-2 NTT layers to minimize the size of pre-computation table.

27

• ntruplus576
index[192] = {1, 289, 145, 433, 73, 361 , 217, 505, 37, 325, 181, 469, 109, 397, 253, 541,
19, 307, 163, 451, 91, 379, 235, 523, 55, 343, 199, 487, 127, 415, 271, 559, 7, 295, 151,
439, 79, 367, 223, 511, 43, 331, 187, 475, 115, 403, 259, 547, 25, 313, 169, 457, 97, 385,
241, 529, 61, 349, 205, 493, 133, 421, 277, 565, 13, 301, 157, 445, 85, 373, 229, 517, 49,
337, 193, 481, 121, 409, 265, 553, 31, 319, 175, 463, 103, 391, 247, 535, 67, 355, 211, 499,
139, 427, 283, 571, 5, 293, 149, 437, 77, 365, 221, 509, 41, 329, 185, 473, 113, 401, 257,
545, 23, 311, 167, 455, 95, 383, 239, 527, 59, 347, 203, 491, 131, 419, 275, 563, 11, 299,
155, 443, 83, 371, 227, 515, 47, 335, 191, 479, 119, 407, 263, 551, 29, 317, 173, 461, 101,
389, 245, 533, 65, 353, 209, 497, 137, 425, 281, 569, 17, 305, 161, 449, 89, 377, 233, 521,
53, 341, 197, 485, 125, 413, 269, 557, 35, 323, 179, 467, 107, 395, 251, 539, 71, 359, 215,
503, 143, 431, 287, 575};

• ntruplus768 and ntruplus1152
index[384] = {1, 577, 289, 865, 145, 721, 433, 1009, 73, 649, 361, 937, 217, 793, 505, 1081,
37, 613, 325, 901, 181, 757, 469, 1045, 109, 685, 397, 973, 253, 829, 541, 1117, 19, 595,
307, 883, 163, 739, 451, 1027, 91, 667, 379, 955, 235, 811, 523, 1099, 55, 631, 343, 919,
199, 775, 487, 1063, 127, 703, 415, 991, 271, 847, 559, 1135, 7, 583, 295, 871, 151, 727,
439, 1015, 79, 655, 367, 943, 223, 799, 511, 1087, 43, 619, 331, 907, 187, 763, 475, 1051,
115, 691, 403, 979, 259, 835, 547, 1123, 25, 601, 313, 889, 169, 745, 457, 1033, 97, 673,
385, 961, 241, 817, 529, 1105, 61, 637, 349, 925, 205, 781, 493, 1069, 133, 709, 421, 997,
277, 853, 565, 1141, 13, 589, 301, 877, 157, 733, 445, 1021, 85, 661, 373, 949, 229, 805,
517, 1093, 49, 625, 337, 913, 193, 769, 481, 1057, 121, 697, 409, 985, 265, 841, 553, 1129,
31, 607, 319, 895, 175, 751, 463, 1039, 103, 679, 391, 967, 247, 823, 535, 1111, 67, 643,
355, 931, 211, 787, 499, 1075, 139, 715, 427, 1003, 283, 859, 571, 1147, 5, 581, 293, 869,
149, 725, 437, 1013, 77, 653, 365, 941, 221, 797, 509, 1085, 41, 617, 329, 905, 185, 761,
473, 1049, 113, 689, 401, 977, 257, 833, 545, 1121, 23, 599, 311, 887, 167, 743, 455, 1031,
95, 671, 383, 959, 239, 815, 527, 1103, 59, 635, 347, 923, 203, 779, 491, 1067, 131, 707,
419, 995, 275, 851, 563, 1139, 11, 587, 299, 875, 155, 731, 443, 1019, 83, 659, 371, 947,
227, 803, 515, 1091, 47, 623, 335, 911, 191, 767, 479, 1055, 119, 695, 407, 983, 263, 839,
551, 1127, 29, 605, 317, 893, 173, 749, 461, 1037, 101, 677, 389, 965, 245, 821, 533, 1109,
65, 641, 353, 929, 209, 785, 497, 1073, 137, 713, 425, 1001, 281, 857, 569, 1145, 17, 593,
305, 881, 161, 737, 449, 1025, 89, 665, 377, 953, 233, 809, 521, 1097, 53, 629, 341, 917,
197, 773, 485, 1061, 125, 701, 413, 989, 269, 845, 557, 1133, 35, 611, 323, 899, 179, 755,
467, 1043, 107, 683, 395, 971, 251, 827, 539, 1115, 71, 647, 359, 935, 215, 791, 503, 1079,
143, 719, 431, 1007, 287, 863, 575, 1151};

• ntruplus864
index[288] = {1, 433, 217, 649, 109, 541, 325, 757, 55, 487, 271, 703, 163, 595, 379, 811,
19, 451, 235, 667, 127, 559, 343, 775, 73, 505, 289, 721, 181, 613, 397, 829, 37, 469, 253,
685, 145, 577, 361, 793, 91, 523, 307, 739, 199, 631, 415, 847, 7, 439, 223, 655, 115, 547,
331, 763, 61, 493, 277, 709, 169, 601, 385, 817, 25, 457, 241, 673, 133, 565, 349, 781, 79,
511, 295, 727, 187, 619, 403, 835, 43, 475, 259, 691, 151, 583, 367, 799, 97, 529, 313, 745,
205, 637, 421, 853, 13, 445, 229, 661, 121, 553, 337, 769, 67, 499, 283, 715, 175, 607, 391,
823, 31, 463, 247, 679, 139, 571, 355, 787, 85, 517, 301, 733, 193, 625, 409, 841, 49, 481,
265, 697, 157, 589, 373, 805, 103, 535, 319, 751, 211, 643, 427, 859, 5, 437, 221, 653, 113,
545, 329, 761, 59, 491, 275, 707, 167, 599, 383, 815, 23, 455, 239, 671, 131, 563, 347, 779,
77, 509, 293, 725, 185, 617, 401, 833, 41, 473, 257, 689, 149, 581, 365, 797, 95, 527, 311,
743, 203, 635, 419, 851, 11, 443, 227, 659, 119, 551, 335, 767, 65, 497, 281, 713, 173, 605,
389, 821, 29, 461, 245, 677, 137, 569, 353, 785, 83, 515, 299, 731, 191, 623, 407, 839, 47,
479, 263, 695, 155, 587, 371, 803, 101, 533, 317, 749, 209, 641, 425, 857, 17, 449, 233,
665, 125, 557, 341, 773, 71, 503, 287, 719, 179, 611, 395, 827, 35, 467, 251, 683, 143, 575,
359, 791, 89, 521, 305, 737, 197, 629, 413, 845, 53, 485, 269, 701, 161, 593, 377, 809, 107,
539, 323, 755, 215, 647, 431, 863};

Figure 15: index for the NTT

28

We can easily express the multiplication in the matrix form as follows:

c(x) =

(
c0
c1

)
=

(
a0 a1ζi
a1 a0

)(
b0
b1

)
.

In the case of d = 3, multiplication is carried out as follows:

a(x)b(x) = (a0b0 + (a2b1 + a1b2)ζi) + (a1b0 + a0b1 + a2b2ζi)x+ (a2b0 + a1b1 + a0b2)x
2

Similarly, we can express the multiplication in the matrix form as follows:

c(x) =

c0c1
c2

 =

a0 a2ζi a1ζi
a1 a0 a2ζi
a2 a1 a0

b0b1
b2

 .

Inversion in NTT domain. In the NTT domain, inversion must be performed in each component ring
Zq[x]/

〈
xd − ζi

〉
similar to multiplication. We can easily derive the formula for the inversion considering

the matrix form of multiplication. In the case of d = 2, we can compute the inverse of f(x) = f0 + f1x ∈
Zq[x]/

〈
x2 − ζi

〉
as

f(x)−1 =

(
f0 f1ζi
f1 f0

)−1(
1
0

)
= d−1

(
f0 −f1ζi
−f1 f0

)(
1
0

)
= d−1

(
f0
−f1

)
where d = (f20 − f21 ζi). In the case of d = 3, we can compute the inverse of f(x) = f0 + f1x + f2x

2 ∈
Zq[x]/

〈
x3 − ζi

〉
as

f−1(x) =

f0 f2ζ f1ζ
f1 f0 f2ζ
f2 f1 f0

−11
0
0

 = d−1

f ′0f ′1
f ′2


where

f ′0 = f20 − ζif1f2, f ′1 = ζif
2
2 − f0f1, f ′2 = f21 − f0f2

and

d = f0(f
2
0 − ζif1f2) + ζif1(f

2
1 − f0f2) + ζif2(ζif

2
2 − f0f1) = f0f

′
1 + ζi(f1f

′
2 + f2f

′
1).

In both cases, we need to compute the inverse of the determinant d modulo q. To mitigate the risk of side-
channel attacks, we opt for Fermat’s Little Theorem rather than the extended Euclidean algorithm. Fermat’s
Little Theorem states that if a is co-prime with q, then aq−1 ≡ 1(mod q) holds true. Using this theorem, we
can compute the inverse of a by calculating aq−2mod q.
Sampling from a Binomial distribution. NTRU+ employs a centered binomial distribution with η = 1
for sampling the coefficients of polynomials, as defined in Algorithm 5. Additionally, we introduce the
BytesToBits function in Algorithm 4, which determines the order of sampled coefficients. BytesToBits
plays a crucial role in the efficient implementation of CBD1 and SOTP using AVX2 instructions. We also
define BitsToBytes as the inverse function of BytesToBits.

29

Algorithm 4 BytesToBits

Require: Byte array B = (b0, b1, · · · , bn/8−1) ∈ Bn/8
Ensure: Bit array f = (f0, · · · , fn−1) ∈ {0, 1}n

1: s = ⌊n/256⌋
2: r = n− 256s
3: (r0, r1, r2, r4, r5, r6, r7) := bit-decompose(r) // r = r02

0 + · · · r727
4: for i from 0 to s− 1 do
5: for j from 0 to 7 do
6: t = b32i+4j+3|b32i+4j+2|b32i+4j+1|b32i+4j

7: for k from 0 to 1 do
8: for l from 0 to 15 do
9: f256i+16l+2j+k = t&1;

10: t = t >> 1;
11: c1 = 256s, c2 = 32s
12: if r7 = 1
13: for j from 0 to 3 do
14: t = bc2+4j+3|bc2+4j+2|bc2+4j+1|bc2+4j

15: for k from 0 to 1 do
16: for l from 0 to 16 do
17: fc1+8l+2j+k = t&1;
18: t = t >> 1;
19: c1 = c1 + 128r7, c2 = c2 + 16r7
20: if r6 = 1
21: for j from 0 to 1 do
22: t = bc2+4j+3|bc2+4j+2|bc2+4j+1|bc2+4j

23: for k from 0 to 1 do
24: for l from 0 to 15 do
25: fc1+4l+2j+k = t&1;
26: t = t >> 1;
27: c1 = c1 + 64r6, c2 = c2 + 8r6
28: if r5 = 1
29: t = bc2+3|bc2+2|bc2+1|bc2
30: for k from 0 to 1 do
31: for l from 0 to 15 do
32: fc1+2l+k = t&1;
33: t = t >> 1;
34: return f = (f0, · · · , fn−1)

30

Algorithm 5 CBD1 : Bn/4 → Rq

Require: Byte array B = (b0, b1, · · · , bn/4−1)
Ensure: Polynomial f ∈ Rq

1: (β0, · · · , βn−1) := BytesToBits((b0, · · · , bn/8−1))
2: (βn, · · · , β2n−1) := BytesToBits((bn/8, · · · , bn/4−1))
3: for i from 0 to n− 1 do
4: fi := βi − βi+n
5: return f = f0 + f1x+ f2x

2 + · · ·+ fn−1x
n−1

Semi-generalized one time pad The SOTP function is nearly identical to CBD1, differing only in that it
applies an exclusive OR operation to the first half of the random bytes and the message before sampling
from the centered binomial distribution. Consequently, SOTP, as defined in Algorithm 6, also utilizes the
BytesToBits function, just like CBD1. Additionally, we introduce the Inv function in Algorithm 7, which
serves as the inverse of the SOTP function and utilizes the BitsToBytes function for byte recovery.

Algorithm 6 SOTP

Require: Message Byte array m = (m0,m1, · · · ,m31)
Require: Byte array B = (b0, b1, · · · , bn/4−1)
Ensure: Polynomial f ∈ Rq

1: (β0, · · · , βn−1) := BytesToBits((b0, · · · , bn/8−1))
2: (βn, · · · , β2n−1) := BytesToBits((bn/8, · · · , bn/4−1))
3: (m0, · · · ,mn−1) := BytesToBits(m)
4: for i from 0 to n− 1 do
5: fi := (mi ⊕ βi)− βi+n
6: return f = f0 + f1x+ f2x

2 + · · ·+ fn−1x
n−1

Algorithm 7 Inv

Require: Polynomial f ∈ Rq
Require: Byte array B = (b0, b1, · · · , bn/4−1)
Ensure: Message Byte array m = (m0,m1, · · · ,m31)

1: (β0, · · · , βn−1) := BytesToBits((b0, · · · , bn/8−1))
2: (βn, · · · , β2n−1) := BytesToBits((bn/8, · · · , bn/4−1))
3: for i from 0 to n− 1 do
4: if fi + βi+n /∈ {0, 1}, return ⊥
5: mi := ((fi + βi+n)&1)⊕ βi
m = BitsToBytes((m0, · · · ,mn−1))

6: return m

Encoding and Decoding. To encode polynomials in Rq into a 3n/2 byte array, we introduce the Encodeq
function in Algorithm 8 and 9. This function assumes that each coefficient of the polynomial belongs to
the set {0, . . . , q − 1} and is stored as a 16-bit data. The design concept behind Encodeq aims to ensure
efficiency when implemented with the AVX2 instruction set. Additionally, we define the Decodeq function
in Algorithm 10 and 11 as the inverse of Encodeq.

31

Algorithm 8 Encodeq for ntruplus576, ntruplus768, and ntruplus1152

Require: Polynomial f ∈ Rq
Ensure: Byte array B = (b0, · · · , b3n/2−1)

1: maxj = 8 for ntruplus576, maxj = 11 for ntruplus768, maxj = 17 for ntruplus1152
2: for i from 0 to 15 do
3: for j from 0 to maxj do
4: for k from 0 to 3 do
5: tk = f64j+i+16k

6: b96j+2i = t0
7: b96j+2i+1 = (t0 >> 8) + (t1 << 4)
8: b96j+2i+32 = t1 >> 4
9: b96j+2i+33 = t2

10: b96j+2i+64 = (t2 >> 8) + (t3 << 4)
11: b96j+2i+65 = t3 >> 4
12: return (b0, · · · , b3n/2−1)

Algorithm 9 Encodeq for ntruplus864
Require: Polynomial f ∈ Rq
Ensure: Byte array B = (b0, · · · , b3n/2−1)

1: for i from 0 to 15 do
2: for j from 0 to 12 do
3: for k from 0 to 3 do
4: tk = f64j+i+16k

5: b96j+2i = t0
6: b96j+2i+1 = (t0 >> 8) + (t1 << 4)
7: b96j+2i+32 = t1 >> 4
8: b96j+2i+33 = t2
9: b96j+2i+64 = (t2 >> 8) + (t3 << 4)

10: b96j+2i+65 = t3 >> 4
11: for i from 0 to 7 do
12: for k from 0 to 3 do
13: tk = f832+i+8k

14: b1248+2i = t0
15: b1248+2i+1 = (t0 >> 8) + (t1 << 4)
16: b1248+2i+16 = t1 >> 4
17: b1248+2i+17 = t2
18: b1248+2i+32 = (t2 >> 8) + (t3 << 4)
19: b1248+2i+33 = t3 >> 4
20: return (b0, · · · , b3n/2−1)

32

Algorithm 10 Decodeq for ntruplus576, ntruplus768, and ntruplus1152

Require: Byte array B = (b0, · · · , b3n/2−1)
Ensure: Polynomial f ∈ Rq

1: maxj = 8 for ntruplus576, maxj = 11 for ntruplus768, maxj = 17 for ntruplus1152
2: for i from 0 to 15 do
3: for j from 0 to maxj do
4: t0 = b96j+2i

5: t1 = b96j+2i+1

6: t2 = b96j+2i+32

7: t3 = b96j+2i+33

8: t4 = b96j+2i+64

9: t5 = b96j+2i+65

10: f64j+i = t0|(t1&0xf) << 8
11: f64j+i+16 = t1 >> 4|t2 << 4
12: f64j+i+32 = t3|(t4&0xf) << 8
13: f64j+i+48 = t4 >> 4|t5 << 4
14: return f = (f0, · · · , fn−1)

Algorithm 11 Decodeq for ntruplus864
Require: Byte array B = (b0, · · · , b3n/2−1)
Ensure: Polynomial f ∈ Rq

1: for i from 0 to 15 do
2: for j from 0 to 12 do
3: t0 = b96j+2i

4: t1 = b96j+2i+1

5: t2 = b96j+2i+32

6: t3 = b96j+2i+33

7: t4 = b96j+2i+64

8: t5 = b96j+2i+65

9: f64j+i = t0|(t1&0xf) << 8
10: f64j+i+16 = t1 >> 4|t2 << 4
11: f64j+i+32 = t3|(t4&0xf) << 8
12: f64j+i+48 = t4 >> 4|t5 << 4
13: for i from 0 to 15 do
14: t0 = b1248+2i

15: t1 = b1248+2i+1

16: t2 = b1248+2i+16

17: t3 = b1248+2i+17

18: t4 = b1248+2i+32

19: t5 = b1248+2i+33

20: f832+i = t0|(t1&0xf) << 8
21: f832+i+8 = t1 >> 4|t2 << 4
22: f832+i+16 = t3|(t4&0xf) << 8
23: f832+i+24 = t4 >> 4|t5 << 4
24: return f = (f0, · · · , fn−1)

33

7.2 Specification of NTRU+

In this section, we specify our IND-CCA secure KEM for the KpqC competition called NTRU+. Unlike
NTRU+ in section 6.3, we applied a slightly tweaked FO

⊥
that is resistant to the multi-target attack. Algo-

rithms 12, 13, and 14 define the key generation, encapsulation, and decapsulation of NTRU+. Note that, in
the key generation algorithm, we multiplied ĥ and ĥ−1 by 216 before encoding to account for Montgomery
reduction.

Algorithm 12 Gen(1λ): key generation

Ensure: Public key pk ∈ B⌈log2 q⌉·n/8
Ensure: Secret key sk ∈ B⌈log2 q⌉·n/4

1: d← B32
2: (f, g) := XOF(d, n/2)
3: f ′ := CBD1(f)
4: g′ := CBD1(g)
5: f = 3f ′ + 1
6: g = 3g′

7: f̂ = NTT(f)
8: ĝ = NTT(g)
9: if f or g is not invertible in Rq, restart

10: ĥ = ĝ ◦ f̂−1
11: pk := Encodeq(2

16 · ĥ)
12: sk := Encodeq(f̂)||Encodeq(216 · ĥ

−1
)||F(pk)

13: return (pk, sk)

Algorithm 13 Encap(pk): encapsulation

Require: Public key pk ∈ B⌈log2 q⌉·n/8
Ensure: Ciphertext c ∈ B⌈log2 q⌉·n/8

1: m← Bn/8
2: (K, r) := H(m,F(pk))
3: r := CBD1(r)
4: r̂ = NTT(r)
5: m = SOTP(m,G(Encodeq(r̂)))
6: m̂ = NTT(m)
7: 216 · ĥ := Decodeq(pk)

8: ĉ = ĥ ◦ r̂+ m̂
9: c := Encodeq(ĉ)

10: return (c,K)

34

Algorithm 14 Decap(sk, c): decapsulation

Require: Secret key sk ∈ B⌈log2 q⌉·n/4+32

Require: Ciphertext c ∈ B⌈log2 q⌉·n/8
Ensure: Shared key m ∈ B32

1: Parse sk = (sk1, sk2, sk3) ∈ B⌈log2 q⌉·n/8 × B⌈log2 q⌉·n/8 × B32
2: f̂ = Decodeq(sk1)
3: ĉ = Decodeq(c)

4: m = NTT−1(ĉ ◦ f̂) mod ±3
5: m̂ = NTT(m)

6: 216 · ĥ−1 = Decodeq(sk2)

7: r̂ = (ĉ− m̂) ◦ ĥ−1 // Recoverr

8: m′ := Inv(m,G(Encodeq(r̂)))
9: if m′ =⊥, return ⊥

10: (K ′, r′) := H(m′, sk3)
11: r′ := CBD1(r

′)
12: r̂′ = NTT(r′)
13: if r̂ = r̂′, return K ′. Else, return ⊥

8 Parameters and Security Analysis

We define four parameter sets for NTRU+, which are listed in Table 7. We call them NTRU+{576, 768,
864, 1152}, respectively, depending on the degree of the polynomial xn − xn/2 + 1. In all parameter sets,
the modulus q is set to 3457, and the coefficients of m and r are sampled according to the distribution ψn1
(i.e., ψR = ψM = ψn1). For each set of (n, q, ψn1 ,M′ = {0, 1}n), the worst-case correctness error δ′ is

calculated by adding the average-case correctness error δ of GenNTRU[ψn1] and the value ∆ = ∥ψR∥
(
1 +√

(ln |M′| − ln∥ψR∥)/2
)

using the equation from Theorem 3.2. Since ∆ is negligible for all parameter
sets, the worst-case correctness error of NTRU+ is almost equal to the average-case correctness error of
each corresponding GenNTRU[ψn1] as expected.

Scheme
classical quantum

LWE NTRU LWE NTRU
NTRU+576 115 114 105 105
NTRU+768 164 164 150 149
NTRU+864 189 189 172 172
NTRU+1152 263 265 241 241

Table 6: Concrete Security Level relative to LWE and NTRU problems

To estimate the concrete security level of NTRU+, we analyze the hardness of the two problems
RLWEn,q,ψn

1
and NTRUn,q,ψn

1
based on each parameter set. For the RLWE problem, we employ the Lattice

estimator [1], which uses the BKZ lattice reduction algorithm [7] for the best-known lattice attacks such as
the primal [2] and dual [22] attacks. Next, for the NTRU problem, we use the NTRU estimator provided
by the finalist NTRU [6], which is based on the primal attack and Howgrave-Graham’s hybrid attack [17]

35

over the NTRU lattice. The primal attack over the NTRU lattice is essentially the same as the attack using
the BKZ algorithm, and Howgrave-Graham’s hybrid attack is also based on the BKZ algorithm combined
with Odlyzko’s Meet-in-the-Middle (MitM) attack [20] on a (reduced) sub-lattice. As a result, the concrete
security level of the NTRU problem is almost the same as that of the RLWE problem. Table 6 shows the
resulting security levels relative to the RLWE and NTRU problems, depending on each NTRU+ parameter
set.

9 Performance Analysis

All benchmarks were obtained on a single core of an Intel Core i7-8700K (Coffee Lake) processor clocked at
3700 MHz. The benchmarking machine was equipped with 16 GB of RAM. Implementations were compiled
using gcc version 9.4.0. Table 7 lists the execution time of the reference and AVX2 implementations of
NTRU+, NTRU, KYBER, and KYBER-90s, along with the security level, the size of the secret key, public
key, and ciphertext. The execution time was measured as the average cycle counts of 100,000 executions
for the respective algorithms. The source code of NTRU+ can be downloaded from https://github.
com/ntruplus/ntruplus.

When comparing NTRU and NTRU+, Table 7 shows that both schemes have similar bandwidth (con-
sisting of a public key and a ciphertext) at comparable security levels. For instance, NTRU+864 at the
189-bit security level requires a bandwidth of 2592 bytes, and ntruhps4096821 at the 178-bit security level
requires a bandwidth of 2460 bytes. In terms of storage cost with respect to the secret key, NTRU+ requires
almost twice as much storage cost as NTRU. This is because NTRU+ stores (f ,h−1,F(pk)) as a secret key
rather than only f . However, in terms of execution time, NTRU+ outperforms NTRU, primarily depending
on whether NTT-friendly rings are used.

When comparing KYBER (KYBER-90s) and NTRU+, the bandwidth of NTRU+ is slightly larger than
that of KYBER at similar security levels. This is because KYBER uses a rounding technique to reduce the
size of a ciphertext. In terms of efficiency, it would be fairer to compare KYBER-90s (rather than KY-
BER) and NTRU+, because both schemes commonly use AES256-CTR as an eXtendable-Output Function
(XOF) to expand randomness from a seed. We notice that KYBER uses SHAKE-128 as its XOF. Generally,
SHAKE-128 is faster than AES256-CTR in the reference implementation, but the situation is reversed in
the AVX2 implementation due to the existence of assembly instructions designed for AES. Table 7 shows
that, at similar security levels, the key generation of NTRU+ is slower than that of KYBER-90s in the
reference implementation. However, the encapsulation and decapsulation of NTRU+ is faster than that of
KYBER-90s in both the reference and AVX2 implementations.

36

https://github.com/ntruplus/ntruplus
https://github.com/ntruplus/ntruplus

Ta
bl

e
7:

C
om

pa
ri

so
n

be
tw

ee
n

th
e

fin
al

is
tN

T
R

U
,K

Y
B

E
R

(K
Y

B
E

R
-9

0s
)a

nd
N
T
R
U
+

Sc
he

m
e

se
cu

ri
ty

le
ve

l
n

q
p
k

ct
sk

lo
g
2
δ′

re
fe

re
nc

e
AV

X
2

cl
as

si
ca

l
qu

an
tu

m
G
en

E
n
ca
p

D
ec
ap

G
en

E
n
ca
p

D
ec
ap

N
T
R
U
+
57

6
11

4
10

5
57

6
34

57
86

4
86

4
17

60
-4

87
28

5
10

6
13

5
20

20
12

N
T
R
U
+
76

8
16

4
14

9
76

8
34

57
11

52
11

52
23

36
-3

79
32

5
13

7
17

7
24

26
17

N
T
R
U
+
86

4
18

9
17

2
86

4
34

57
12

96
12

96
26

24
-3

40
32

4
16

2
21

7
23

28
18

N
T
R
U
+
11

52
26

3
24

1
11

52
34

57
17

28
17

28
34

88
-2

60
77

0
20

4
28

8
45

36
24

K
Y

B
E

R
51

2
11

8
10

8
51

2
33

29
80

0
76

8
16

32
-1

39
10

3
12

9
15

6
27

35
26

K
Y

B
E

R
51

2-
90

s
18

1
21

1
23

8
17

22
15

K
Y

B
E

R
76

8
18

2
16

5
76

8
33

29
11

84
10

88
24

00
-1

64
18

4
21

7
25

3
43

55
42

K
Y

B
E

R
76

8-
90

s
33

3
37

1
40

5
24

31
22

K
Y

B
E

R
10

24
25

5
23

1
10

24
33

29
15

68
15

68
31

68
-1

74
28

3
31

7
36

2
61

80
64

K
Y

B
E

R
10

24
-9

0s
52

6
56

3
60

4
33

43
31

n
tr
u
h
p
s2
04

85
09

10
6

96
50

9
20

48
69

9
69

9
93

5
-∞

84
28

59
6

14
35

19
5

84
33

n
tr
u
h
rs
s7
01

13
7

12
4

70
1

81
92

11
38

11
38

14
50

-∞
15

60
3

93
8

26
55

25
7

60
51

n
tr
u
h
p
s2
04

86
77

14
4

13
1

67
7

20
48

93
0

93
0

12
34

-∞
14

46
1

99
3

24
78

30
7

11
4

49

n
tr
u
h
p
s4
09

68
21

17
8

16
2

82
1

40
96

12
30

12
30

15
90

-∞
21

40
3

14
01

35
97

41
7

13
6

62

n
:p

ol
yn

om
ia

ld
eg

re
e

of
th

e
ri

ng
.

q:
m

od
ul

us
.

(p
k
,c
t,
sk

):
by

te
s.

δ′
:w

or
st

-c
as

e
(o

rp
er

fe
ct

)c
or

re
ct

ne
ss

er
ro

r.

(G
en

,E
n
ca
p

,D
ec
ap

):
K

cy
cl

es
of

re
fe

re
nc

e
or

AV
X

2
im

pl
em

en
ta

tio
ns

.

37

References

[1] Martin R. Albrecht, Rachel Player, and Sam Scott. On the concrete hardness of learning with errors.
J. Math. Cryptol., 9(3):169–203, 2015.

[2] Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter Schwabe. Post-quantum key exchange -
A new hope. In Thorsten Holz and Stefan Savage, editors, USENIX Security 2016: 25th USENIX
Security Symposium, pages 327–343, Austin, TX, USA, August 10–12, 2016. USENIX Association.

[3] Andris Ambainis, Mike Hamburg, and Dominique Unruh. Quantum security proofs using semi-
classical oracles. In Alexandra Boldyreva and Daniele Micciancio, editors, Advances in Cryptology –
CRYPTO 2019, Part II, volume 11693 of Lecture Notes in Computer Science, pages 269–295, Santa
Barbara, CA, USA, August 18–22, 2019. Springer, Heidelberg, Germany.

[4] Daniel J. Bernstein and Edoardo Persichetti. Towards KEM unification. Cryptology ePrint Archive,
Report 2018/526, 2018. https://eprint.iacr.org/2018/526.

[5] Nina Bindel, Mike Hamburg, Kathrin Hövelmanns, Andreas Hülsing, and Edoardo Persichetti. Tighter
proofs of CCA security in the quantum random oracle model. In Dennis Hofheinz and Alon Rosen,
editors, TCC 2019: 17th Theory of Cryptography Conference, Part II, volume 11892 of Lecture Notes
in Computer Science, pages 61–90, Nuremberg, Germany, December 1–5, 2019. Springer, Heidelberg,
Germany.

[6] Cong Chen, Oussama Danba, Jeffrey Hoffstein, Andreas Hulsing, Joost Rijneveld, John M.
Schanck, Peter Schwabe, William Whyte, Zhenfei Zhang, Tsunekazu Saito, Takashi Yamakawa, and
Keita Xagawa. NTRU. Technical report, National Institute of Standards and Technology, 2020.
available at https://csrc.nist.gov/projects/post-quantum-cryptography/
post-quantum-cryptography-standardization/round-3-submissions.

[7] Yuanmi Chen and Phong Q. Nguyen. BKZ 2.0: Better lattice security estimates. In Dong Hoon Lee and
Xiaoyun Wang, editors, Advances in Cryptology – ASIACRYPT 2011, volume 7073 of Lecture Notes
in Computer Science, pages 1–20, Seoul, South Korea, December 4–8, 2011. Springer, Heidelberg,
Germany.

[8] Jan-Pieter D’Anvers, Qian Guo, Thomas Johansson, Alexander Nilsson, Frederik Vercauteren, and In-
grid Verbauwhede. Decryption failure attacks on IND-CCA secure lattice-based schemes. In Dongdai
Lin and Kazue Sako, editors, PKC 2019: 22nd International Conference on Theory and Practice of
Public Key Cryptography, Part II, volume 11443 of Lecture Notes in Computer Science, pages 565–
598, Beijing, China, April 14–17, 2019. Springer, Heidelberg, Germany.

[9] Jan-Pieter D’Anvers, Angshuman Karmakar, Sujoy Sinha Roy, Frederik Vercauteren,
Jose Maria Bermudo Mera, Michiel Van Beirendonck, and Andrea Basso. SABER.
Technical report, National Institute of Standards and Technology, 2020. available
at https://csrc.nist.gov/projects/post-quantum-cryptography/
post-quantum-cryptography-standardization/round-3-submissions.

[10] Alexander W. Dent. A designer’s guide to KEMs. In Kenneth G. Paterson, editor, 9th IMA Interna-
tional Conference on Cryptography and Coding, volume 2898 of Lecture Notes in Computer Science,
pages 133–151, Cirencester, UK, December 16–18, 2003. Springer, Heidelberg, Germany.

38

https://eprint.iacr.org/2018/526
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions

[11] Jelle Don, Serge Fehr, Christian Majenz, and Christian Schaffner. Online-extractability in the quantum
random-oracle model. In Orr Dunkelman and Stefan Dziembowski, editors, Advances in Cryptology
– EUROCRYPT 2022, Part III, volume 13277 of Lecture Notes in Computer Science, pages 677–706,
Trondheim, Norway, May 30 – June 3, 2022. Springer, Heidelberg, Germany.

[12] Julien Duman, Kathrin Hövelmanns, Eike Kiltz, Vadim Lyubashevsky, Gregor Seiler, and Dominique
Unruh. A thorough treatment of highly-efficient NTRU instantiations. In Alexandra Boldyreva and
Vladimir Kolesnikov, editors, PKC 2023: 26th International Conference on Theory and Practice of
Public Key Cryptography, Part I, volume 13940 of Lecture Notes in Computer Science, pages 65–94,
Atlanta, GA, USA, May 7–10, 2023. Springer, Heidelberg, Germany.

[13] Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmetric and symmetric encryption
schemes. Journal of Cryptology, 26(1):80–101, January 2013.

[14] Chenar Abdulla Hassan and Oğuz Yayla. Radix-3 NTT-based polynomial multiplication for lattice-
based cryptography. Cryptology ePrint Archive, Report 2022/726, 2022. https://eprint.
iacr.org/2022/726.

[15] Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman. NTRU: A ring-based public key cryptosystem.
In Third Algorithmic Number Theory Symposium (ANTS), volume 1423 of Lecture Notes in Computer
Science, pages 267–288. Springer, Heidelberg, Germany, June 1998.

[16] Dennis Hofheinz, Kathrin Hövelmanns, and Eike Kiltz. A modular analysis of the Fujisaki-Okamoto
transformation. In Yael Kalai and Leonid Reyzin, editors, TCC 2017: 15th Theory of Cryptography
Conference, Part I, volume 10677 of Lecture Notes in Computer Science, pages 341–371, Baltimore,
MD, USA, November 12–15, 2017. Springer, Heidelberg, Germany.

[17] Nick Howgrave-Graham. A hybrid lattice-reduction and meet-in-the-middle attack against NTRU. In
Alfred Menezes, editor, Advances in Cryptology – CRYPTO 2007, volume 4622 of Lecture Notes in
Computer Science, pages 150–169, Santa Barbara, CA, USA, August 19–23, 2007. Springer, Heidel-
berg, Germany.

[18] Nick Howgrave-Graham, Phong Q. Nguyen, David Pointcheval, John Proos, Joseph H. Silverman, Ari
Singer, and William Whyte. The impact of decryption failures on the security of NTRU encryption. In
Dan Boneh, editor, Advances in Cryptology – CRYPTO 2003, volume 2729 of Lecture Notes in Com-
puter Science, pages 226–246, Santa Barbara, CA, USA, August 17–21, 2003. Springer, Heidelberg,
Germany.

[19] Nick Howgrave-Graham, Joseph H. Silverman, Ari Singer, and William Whyte. NAEP: Provable
security in the presence of decryption failures. Cryptology ePrint Archive, Report 2003/172, 2003.
https://eprint.iacr.org/2003/172.

[20] Nick Howgrave-Graham, Joseph H. Silverman, and William Whyte. A meet-in-the-middle attack on
an ntru private key. Technical report, NTRU Cryptosystems, 2003. available at https://ntru.
org/f/tr/tr004v2.pdf.

[21] Joohee Lee, Minju Lee, and Jaehui Park. A Novel CCA Attack for NTRU+ KEM. Cryptology ePrint
Archive, Report 2023/1188, 2023. https://eprint.iacr.org/2023/1188.

39

https://eprint.iacr.org/2022/726
https://eprint.iacr.org/2022/726
https://eprint.iacr.org/2003/172
https://ntru.org/f/tr/tr004v2.pdf
https://ntru.org/f/tr/tr004v2.pdf
https://eprint.iacr.org/2023/1188

[22] Richard Lindner and Chris Peikert. Better key sizes (and attacks) for LWE-based encryption. In
Aggelos Kiayias, editor, Topics in Cryptology – CT-RSA 2011, volume 6558 of Lecture Notes in Com-
puter Science, pages 319–339, San Francisco, CA, USA, February 14–18, 2011. Springer, Heidelberg,
Germany.

[23] Vadim Lyubashevsky and Gregor Seiler. NTTRU: Truly fast NTRU using NTT. IACR Transactions
on Cryptographic Hardware and Embedded Systems, 2019(3):180–201, 2019. https://tches.
iacr.org/index.php/TCHES/article/view/8293.

[24] Tsunekazu Saito, Keita Xagawa, and Takashi Yamakawa. Tightly-secure key-encapsulation mech-
anism in the quantum random oracle model. In Jesper Buus Nielsen and Vincent Rijmen, editors,
Advances in Cryptology – EUROCRYPT 2018, Part III, volume 10822 of Lecture Notes in Computer
Science, pages 520–551, Tel Aviv, Israel, April 29 – May 3, 2018. Springer, Heidelberg, Germany.

[25] Peter Schwabe, Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint,
Vadim Lyubashevsky, John M. Schanck, Gregor Seiler, and Damien Stehlé. CRYSTALS-
KYBER. Technical report, National Institute of Standards and Technology, 2020. avail-
able at https://csrc.nist.gov/projects/post-quantum-cryptography/
post-quantum-cryptography-standardization/round-3-submissions.

[26] Zhenfei Zhang, Cong Chen, Jeffrey Hoffstein, and William Whyte. NTRUEn-
crypt. Technical report, National Institute of Standards and Technology, 2017. avail-
able at https://csrc.nist.gov/projects/post-quantum-cryptography/
post-quantum-cryptography-standardization/round-1-submissions.

40

https://tches.iacr.org/index.php/TCHES/article/view/8293
https://tches.iacr.org/index.php/TCHES/article/view/8293
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-1-submissions

A Factorizing the Polynomial

For a better understanding of applying NTT, we will describe how to factor the polynomial ring Z3457[x]/⟨x576−
x288+1⟩. By utilizing the Radix-2 NTT layer for the cyclotomic trinomial, we can factorize x576−x288+1
as follows:

x576 − x288 + 1 = (x288 − ζ96)(x288 − ζ480).

Here, ζℓ/6 = ζ96 represents a primitive sixth root of unity modulo q. Consequently, we can observe that we
can apply a Radix-3 NTT layer because both x288 − ζ96 and x288 − ζ480 can be factorized as:

x288 − ζ96 = (x96 − ζ32)(x96 − ζ32ω)(x96 − ζ32ω2) = (x96 − ζ32)(x96 − ζ224)(x96 − ζ416)
x288 − ζ480 = (x96 − ζ160)(x96 − ζ160ω)(x96 − ζ160ω2) = (x96 − ζ160)(x96 − ζ352)(x96 − ζ544).

Here, ω = ζℓ/3 = ζ192 is a primitive third root of unity modulo q. Similarly, we can observe that we can
apply a Radix-2 NTT layer because both x96 − ζ32 and x96 − ζ480 can be further factorized by half. For
example, x96 − ζ32 can be factorized as:

x96 − ζ32 = (x48 − ζ16)(x48 + ζ16) = (x48 − ζ16)(x48 − ζ16ζℓ/2) = (x48 − ζ16)(x48 − ζ336)

Here, ζℓ/2 = ζ288 is a primitive second root of unity modulo q. If we continue this process, we can factor
the polynomial x576 − x288 + 1 all the way down to the degree d = 3.

B Radix-3 NTT layer

For a clearer understanding, we describe the Radix-3 NTT layer used in our implementation. The Radix-3
NTT layer establishes a ring isomorphism between Zq[x]/⟨xn − α3⟩ and the product ring Zq[x]/⟨xn/3 −
α⟩ × Zq[x]/⟨xn/3 − β⟩ × Zq[x]/⟨xn/3 − γ⟩, where β = αω, and γ = αω2 (with ω representing a primitive
third root of unity modulo q). To transform a polynomial a(x) = a0(x) + a1(x)x

n/3 + a2(x)x
2n/3 ∈

Zq[x]/⟨xn−α3⟩ (where a0(x), a1(x), and a2(x) are polynomials with a maximum degree of n/3− 1) into
the form (â0(x), â1(x), â2(x)) ∈ Zq[x]/⟨xn/3−α⟩ ×Zq[x]/⟨xn/3− β⟩ ×Zq[x]/⟨xn/3− γ⟩, the following
equations must be computed.

â0(x) = a0(x) + a1(x)α+ a2(x)α
2,

â1(x) = a0(x) + a1(x)β + a2(x)β
2,

â2(x) = a0(x) + a1(x)γ + a2(x)γ
2.

Naively, these equations might appear to require 2n multiplications and 2n additions, using six predefined
values: α, α2, β, β2, γ, and γ2. Nevertheless, by following the techniques in [14], we can significantly
reduce this computational load to n multiplications, n additions, and 4n/3 subtractions, by using only three
predefined values: α, α2, and ω, as described in Algorithm 15.

â0(x) = a0(x) + a1(x)α+ a2(x)α
2

â1(x) = a0(x)− a2(x)α2 + ω(a1(x)α− a2(x)α2)

â2(x) = a0(x)− a1(x)α− ω(a1(x)α− a2(x)α2)

41

Algorithm 15 Radix-3 NTT layer

Require: a(x) = a0(x) + a1(x)x
n/3 + a2(x)x

2n/3 ∈ Zq[x]/⟨xn − ζ3⟩
Ensure: (â0(x), â1(x), â2(x)) ∈ Zq[x]/⟨xn/3 − α⟩ × Zq[x]/⟨xn/3 − β⟩ × Zq[x]/⟨xn/3 − γ⟩

1: t1(x) = a1(x)α
2: t2(x) = a2(x)α

2

3: t3(x) = (t1(x)− t2(x))w
4: â2(x) = a0(x)− t1(x) + t3(x)
5: â1(x) = a0(x)− t1(x) + t3(x)
6: â0(x) = a0(x)− t1(x) + t3(x)
7: return (â0(x), â1(x), â2(x))

Considering the aforementioned Radix-3 NTT layer, we need to compute the following equations to
recover a(x) ∈ Zq[x]/⟨xn − ζ3⟩ from (â0(x), â1(x), â2(x)) ∈ Zq[x]/⟨xn/3 − α⟩ × Zq[x]/⟨xn/3 − β⟩ ×
Zq[x]/⟨xn/3 − γ⟩.

3a0(x) = â0(x) + â1(x) + â2(x),

3a1(x) = â0(x)α
−1 + â1(x)β

−1 + â2(x)γ
−1,

3a2(x) = â0(x)α
−2 + â1(x)β

−2 + â2(x)γ
−2.

Naively, these equations might appear to require 2n multiplications and 2n additions, using six predefined
values: α−1, α−2, β−1, β−2, γ−1, and γ−2. Nevertheless, by following the techniques in [14], we can
significantly reduce this computational load to n multiplications, n additions, and 4n/3 subtractions, by
employing only four predefined values: α−1, α−2, and ω, as described in in Algorithm 16.

3a0(x) = â0(x) + â1(x) + â2(x)

3a1(x) = α−1(â0(x)− â1(x)− w(â1(x)− â2(x)))
3a2(x) = α−2(â0(x)− â2(x) + w(â1(x)− â2(x)))

Algorithm 16 Radix-3 Inverse NTT layer

Require: (â0(x), â1(x), â2(x)) ∈ Zq[x]/⟨xn/3 − α⟩ × Zq[x]/⟨xn/3 − β⟩ × Zq[x]/⟨xn/3 − γ⟩
Ensure: 3a(x) = 3a0(x) + 3a1(x)x

n/3 + 3a2(x)x
2n/3 ∈ Zq[x]/⟨xn − α3⟩

1: t1(x) = w(â1(x)− â2(x))
2: t2(x) = â0(x)− â1(x)− t1(x)
3: t3(x) = â0(x)− â2(x) + t1(x)
4: 3a0(x) = â0(x) + â1(x) + â2(x)
5: 3a1(x) = t2(x)α

−1

6: 3a2(x) = t3(x)α
−2

7: return 3a(x) = 3a0(x) + 3a1(x)x
n/3 + 3a2(x)x

2n/3

Note that we can reuse the predefined table used for NTT in the computation of Inverse NTT.

3a0(x) = â0(x) + â1(x) + â2(x)

3a1(x) = (w−1α−1)(â1(x)− â2(x)− (â2(x)− â0(x))w)
3a2(x) = (w−2α−2)(â1(x)− â0(x) + (â2(x)− â0(x))w)

42

	Introduction
	Our Results
	Related Works

	Preliminaries
	Public Key Encryption and Related Properties
	Security
	Key Encapsulation Mechanism

	ACWC2 Transformation
	SOTP
	ACWC2

	IND-CCA Secure KEM from ACWC2
	FO Transform with Re-encryption
	FO-Equivalent Transform Without Re-encryption

	GenNTRU[psi_1n̂] (=PKE)
	Notations
	Centered Binomial Distribution psi_k
	Other Notations

	Description of GenNTRU[psi_1n̂]
	Security and Other Properties
	Cryptographic Assumptions
	Security Proofs
	Average-Case Correctness Error
	Injectivity and rigidity

	NTRU+
	Instantiation of SOTP
	CPA-NTRU+ (=PKE')
	NTRU+ (=KEM)

	Algorithm Specification
	Preliminaries and notation
	Specification of NTRU+

	Parameters and Security Analysis
	Performance Analysis
	Factorizing the Polynomial
	Radix-3 NTT layer

