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Changelog

Version 1.1

In terms of the specification, the primary changes are as follows:

1. Modifying the Inv function of SOTP to defend against Lee’s attacks
In June 2023, Joohee Lee announced a chosen-ciphertext attack against NTRU+KEM, which oc-
curred due to the absence of the bit-checking process in the Inv function. Version 1.1 of NTRU+KEM
addressed this issue by adding the bit-checking process and providing a more clarified definition of
SOTP.

2. Modifying the Encap and Decap algorithms to consider multi-target attacks
In Version 1.0, NTRU+KEM did not consider the multi-target attacks. To achieve the multi-target
security in Version 1.1, we have adopted the well-known technique to add the hash value F(pk) of the
public key pk into the hashing such as (r,K) = H(m,F(pk)) when applying the Fujisaki-Okamoto
transform. Accordingly, we also have changed the secret key into sk = (f, h−1,F(pk)), which
increases the secret key size by 32 bytes in all sets of parameters.

3. Modifying the NTT structure for NTRU+KEM576 and NTRU+KEM1152
The ring structures for NTRU+KEM576 and NTRU+KEM1152 can be factored all the way down
to

∏n
i=0 Zq[x]/⟨x − ζi⟩. When applying NTT for

∏n
i=0 Zq[x]/⟨x − ζi⟩, n modular inversions are

required during key generation to compute f−1. To reduce the number of modular inversions by n/2,
we have factored the rings into

∏n/2
i=0 Zq[x]/⟨x2 − ζi⟩ in Version 1.0. However, in Version 1.1, we

have further reduced the n modular inversions by n/3 by applying NTT for
∏n/3
i=0 Zq[x]/⟨x3 − ζi⟩.

4. Clarification regarding randomness-polynomial sampling from binary bit-strings
In Encap of Version 1.0, the coefficients of the randomness-polynomial r were described as if they
were composed of bit strings. In Version 1.1, we clarified this mistake by defining r := CBD1(r).

Next, in terms of our implementation, the changes are as follows:

1. Modifying the Inv algorithm of SOTP to defend against Lee’s attacks

2. Modifying the Encap and Decap algorithms to consider multi-target attacks

3. Modifying the NTT structure for NTRU+KEM576 and NTRU+KEM1152
This allows for improving the key generation timings and reducing the size of pre-computation tables.

4. Modifying the Radix-3 NTT implementation
Implementing Radix-3 NTT naively requires 2n multiplications per layer. In Version 1.0, we reduced
this to 4n/3 multiplications, but by adapting the recent result (https://eprint.iacr.org/2022/726.pdf),
we can further reduce the number of multiplications from 4n/3 to n.

5. Removing the dependencies on OpenSSL and AVX in Reference implementation
The initial implementation of NTRU+KEM was mainly based on the code of NTTRU (that are found
in ‘https://github.com/gregorseiler/NTTRU’), which uses AVX assembly codes for the implementa-
tion of AES-256-CTR. Also, the initial implementation used the ‘rng.c’ provided by NIST, which
also has OpenSSL dependencies. To remove those dependencies, we have referred to the code of
CRYSTALS-Kyber (https://github.com/pq-crystals/kyber).
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6. Reducing the size of the pre-computation table in Reference implementation
In Version 1.0, performing NTT and Inverse NTT operations required two separate pre-computation
tables. The revised implementation have changed to use a single table by adapting the code of
CRYSTALS-Kyber, along with our additional manipulation to support the Radix-3 NTT layer.

Version 2.0

In terms of the specification, the primary changes are as follows:

1. In Version 1.1, we adapted countermeasures against the attack proposed by Joohee Lee. However,
some ambiguity remained in the proof of Lemma 4.3. In Version 2.0, we addressed these issues by
making the following modifications:

(a) Redefined the definition of injectivity and rigidity of PKE in Section 2.2, along with revising the
analysis of injectivity and rigidity for GenNTRU[ψn1 ] in Section 6.1.4.

(b) Redefined the definition of rigidity for SOTP in Section 3.1, and revised the analysis of rigidity
for the instantiation of SOTP used in CPA-NTRU+ in Section 6.2.1.

(c) Slightly modified the definition of the ACWC2 transformation in Section 3.2.

(d) Updated Theorems 3.5 and 3.6 to reflect the redefined definition of injectivity.

(e) Modified Section 4.2 (and Lemma 4.3) to address the comments made by Joohee Lee.

2. We propose a new NTRU-based IND-CCA secure PKE called ’NTRU+PKE’.

NTRU+PKE is constructed by applying a variant of FO⊥PKE, called FO
⊥
KEM, to CPA-NTRU+. Here,

FO⊥PKE refers to the transformation proposed in [17], which converts IND-CPA secure PKE into IND-
CCA secure PKE. To avoid confusion, we rename the previous NTRU+ to NTRU+KEM.

3. To provide the theoretical background for NTRU+PKE, we include the following:

(a) We analyze the security of FO⊥PKE in ROM and QROM, by taking into account correctness errors
that were not clearly addressed in the analysis of [17]. It can be found in Theorem 5.1 and 5.2.

(b) We analyze the equivalence between FO⊥PKE and FO
⊥
PKE in Lemma 5.3, similar to Lemma 4.3.

4. We correct some errors in Appendix B, which is necessary for reusing the predefined table in order to
compute the Inverse NTT.

Version 2.1

Following Professor D. J. Bernstein’s comments on the implementation of NTRU+ (https://groups.google.
com/g/kpqc-bulletin/c/exrFyRPhFJ8), we investigated and identified errors in the AVX2 implementation of
NTRU+. The following changes were made:

1. Changes in NTRU+{KEM,PKE}864
Memory access violations were discovered and corrected in the ‘poly_add’, ‘poly_sub’, and ‘poly_triple’
functions.

2. Changes in NTRU+{KEM,PKE}1152
An error in the ‘poly_sotp’ function was found, where ‘vmovdqa’ was applied to non-aligned memory.
This was corrected by replacing ‘vmovdqa’ with ‘vmovdqu’.
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3. Other Adjustments
To address warnings regarding the End of File (EOF) encountered during clang compilation, necessary
adjustments were made throughout the codebase.

Version 2.2

The primary changes to the specification are as follows:

1. Definition of Hash Function
Following comments by Dr. Seongkwang Kim indicating that AES256CTR is not suitable for in-
stantiating the random oracle model (https://groups.google.com/g/kpqc-bulletin/c/C-mtPvzo3QA/m/
vuQ0sis6AgAJ), we revised how we instantiate the hash functions G, HKEM, and HPKE in the spec-
ification by replacing AES256CTR with SHAKE256.

2. Definition of SOTP
To reduce confusion in the definition of SOTP, we changed the notation. Previously, the function
for encoding messages was named SOTP, and the function for recovering messages was named Inv.
However, the encoding function has now been renamed to Encode. SOTP is defined as including both
functions, Encode and Inv, and is expressed as SOTP = (Encode, Inv).

3. Changes in the Key Generation
In the key generation process, f and g were originally sampled together from the same random seed
until both were invertible. To enhance efficiency, we separated the sampling of the invertible poly-
nomials f and g: first, we sample f until it is invertible, then we sample g until it is invertible. This
sequential sampling minimizes unnecessary rejections. Additionally, f and g are now generated using
separate random seeds.

4. Changes in the NTT Structures
To improve the efficiency of key generation, we reduced the number of modular inverse operations,
which are the most computationally intensive part of the key generation process, by modifying the
way the NTT is applied. As mentioned in the changelog of Version 1.1, the ring structures of
NTRU+{KEM,PKE}{576, 1152} can be factored as

∏n−1
i=0 Zq[x]/⟨x − ζi⟩. Additionally, the ring

structure of NTRU+{KEM,PKE}768 can be factored as
∏n/2−1
i=0 Zq[x]/⟨x2 − ζi⟩. To further reduce

the number of modular inversions for the parameter sets NTRU+{KEM,PKE}{576, 768, 1152}, we
modified the application of the NTT to factor the ring as

∏n/4
i=0 Zq[x]/⟨x4 − ζi⟩.

5. Spreadness of PKE′ = ACWC2[PKE,SOTP,G]
We re-analyzed the spreadness of the PKE′ = ACWC2[PKE, SOTP,G] in Section 3.2. In PKE′,
SOTP = (Encode, Inv) is used as Encode(m,G(r)) with a hash function G. In the underlying PKE,
a ciphertext is generated as c = Enc(pk,Encode(m,G(r)); r). To analyze γ-spreadness, the message
m must be fixed for each randomness r (honestly chosen from R). However, when using SOTP, the
encoded message Encode(m,G(r)) also changes as r changes. In the previous analysis, we did not
consider this point, so we revise the proof of γ-spreadness.

6. Parameter Adjustment in NTRU+PKE
To conservatively set the parameters, we modified the maximum message length supported by NTRU+PKE
to 32 bytes for all parameter sets NTRU+PKE{576, 768, 864, 1152}.
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7. Revisions to the Definition of PKE
In response to comments by Prof. Sven Schäge through private email communication, we updated
the definition of PKE, rigidity of PKE. Also, we included the definition of weakly spreadness in [15],
which is weaker version of spreadness defined in [21]. Based on the changed definitions, we revised
the lemmas 4.3 and 5.3.

8. Revisions to Lemma
In response to comments by Prof. Joohee Lee presented at the 8th KpqC workshop, we updated the
proofs of Lemma 4.3. Specifically, Prof. Joohee Lee noted that the precondition for applying the
rigidity of PKE in Lemma 4.3 was not fully satisfied.

Changes to the implementation are as follows:

1. Source Code for the Hash Functions
We replaced the source code of SHA256 and additionally used the source code for SHAKE256,
adapted from https://github.com/kpqc-cryptocraft/KpqClean_ver2.

2. Changes in the Key Generation
To improve the efficiency of key generation, we adopted an early abort approach when checking the
invertibility of a polynomial. When checking the invertibility of a polynomial, we need to verify that
it is invertible in all rings Zq[x]/⟨xd − ζi⟩. For efficiency, we abort as soon as we find the first ring
in which the polynomial is not invertible. One may wonder whether this type of early abort could
leak information about the randomness used to sample the polynomial. However, since the rejected
polynomial is not reused as part of the secret key, we believe this approach is secure, provided that
the underlying randombytes function is forward-secure.

3. Changes in Ring Multiplication and Inversion
We implemented ring operations in

∏n/4−1
i=0 Zq[x]/⟨x4 − w⟩, which are required to realize the newly

proposed NTT structure in Version 2.2 for the parameter sets NTRU+{KEM,PKE}{576, 768, 1152}.
We referred to the ideas presented in [38] to implement the inversion in Zq[x]/⟨x4 − w⟩.
Additionally, to improve the efficiency of key generation, we adopted lazy Montgomery reduction [34]
in the implementation of ring operations (multiplication and inversion) in

∏n/d−1
i=0 Zq[x]/⟨xd−w⟩ for

d = 3, 4. During multiplication and inversion, we need to compute the sum of several products of
polynomial coefficients. To reduce the number of Montgomery and Barrett reductions, we applied
Montgomery reduction after accumulating the 32-bit data.

Lastly, to enhance the efficiency of the modular inversion using Fermat’s Little Theorem, a−1 ≡ aq−2
(mod q), we leveraged the binary structure of q− 2 = 3455 = 110101111111(2), inspired by the fast
modular inversion in Curve25519 [5]. While the standard square-and-multiply approach requires 20
fqmul operations, we reduced this number to 16 by reusing intermediate values.
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NTRU+: Compact Construction of NTRU
Using Simple Encoding Method*

Jonghyun Kim† Jong Hwan Park‡

October 4, 2024

Abstract

NTRU was the first practical public key encryption scheme constructed on a lattice over a polynomial-
based ring and has been considered secure against significant cryptanalytic attacks over the past few
decades. However, NTRU and its variants suffer from several drawbacks, including difficulties in achiev-
ing worst-case correctness error in a moderate modulus, inconvenient sampling distributions for mes-
sages, and relatively slower algorithms compared to other lattice-based schemes.

In this work, we propose two new NTRU-based primitives: a key encapsulation mechanism (KEM)
called ‘NTRU+KEM’ and a public key encryption (PKE) called ‘NTRU+PKE’. These new primitives
overcome nearly all the above-mentioned drawbacks. They are constructed based on two new generic
transformations: ACWC2 and FO

⊥
. ACWC2 is used to easily achieve worst-case correctness error, and

FO
⊥

(a variant of the Fujisaki-Okamoto transform) is used to achieve chosen-ciphertext security without
performing re-encryption. Both ACWC2 and FO

⊥
are defined using a randomness-recovery algorithm

(that is unique to NTRU) and a novel message-encoding method. In particular, our encoding method,
called the semi-generalized one-time pad (SOTP), allows us to use a message sampled from a natural
bit-string space with an arbitrary distribution. We provide four parameter sets for NTRU+{KEM,PKE}
and present implementation results using NTT-friendly rings over cyclotomic trinomials.

Keywords: NTRU, RLWE, Lattice-based cryptography, Post-quantum cryptography.

1 Introduction

The NTRU encryption scheme [20] was introduced in 1998 by Hoffstein, Pipher, and Silverman as the first
practical public key encryption scheme using lattices over polynomial rings. The hardness of NTRU is
crucially based on the NTRU problem [20], which has withstood significant cryptanalytic attacks over the
past few decades. This longer history, compared to other lattice-based problems (such as ring/module-LWE),
has been considered an important factor in selecting NTRU as a finalist in the NIST PQC standardization
process. While the finalist NTRU [10] has not been chosen by NIST as one of the first four quantum-
resistant cryptographic algorithms, it still has several distinct advantages over other lattice-based competitive
schemes such as KYBER [33] and Saber [13]. Specifically, the advantages of NTRU include: (1) the
compact structure of a ciphertext consisting of a single polynomial, and (2) (possibly) faster encryption and
decryption without the need to sample the coefficients of a public key polynomial.

*This work is submitted to ‘Korean Post-Quantum Cryptography Competition’ (www.kpqc.or.kr).
†Korea University, Seoul, Korea. Email: yoswuk@korea.ac.kr.
‡Sangmyung University, Seoul, Korea. Email: jhpark@smu.ac.kr.
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The central design principle of NTRU is described over a ring Rq = Zq[x]/⟨f(x)⟩, where q is a positive
integer and f(x) is a polynomial. The public key is generated as h = pg/(pf ′ + 1)1, where g and f ′ are
sampled according to a narrow distribution ψ, p is a positive integer that is coprime with q and smaller than
q (e.g., 3), and the corresponding private key is f = pf ′ + 1. To encrypt a message m sampled from the
message spaceM′, one creates two polynomials r and m, with coefficients drawn from a narrow distribution
ψ, and computes the ciphertext c = hr+m in Rq. An (efficient) encoding method may be used to encode
m ∈ M′ into m and r ∈ Rq. Alternatively, it is possible to directly sample m and r from ψ, where m is
considered as the message to be encrypted. To decrypt the ciphertext c, one computes cf in Rq, recovers m
by deriving the value cf ′ modulo p, and (if necessary) decodes m to obtain the message m. The decryption
of NTRU works correctly if all the coefficients of the polynomial p(gr + f ′m) + m are less than q/2.
Otherwise, the decryption fails, and the probability that it fails is called a correctness (or decryption) error.

In the context of chosen-ciphertext attacks, NTRU, like other ordinary public key encryption schemes,
must guarantee an extremely negligible worst-case correctness error. This is essential to prevent the leak-
age of information about the private key through adversarial decryption queries, such as attacks against
lattice-based encryption schemes [12, 23]. Roughly speaking, the worst-case correctness error refers to the
probability that decryption fails for any ciphertext that can be generated with all possible messages and
randomness in their respective spaces. The worst-case correctness error considers that an adversary, A, can
maliciously choose messages and randomness without sampling normally according to their original distri-
butions (if possible). In the case of NTRU, the failure to decrypt a specific ciphertext c = hr+m provides
A with the information that one of the coefficients of p(gr + f ′m) + m is larger than or equal to q/2. If
A has control over the choice of r and m, even one such decryption failure may open a path to associated
decryption queries to obtain more information about secret polynomials g and f .

When designing NTRU, two approaches can be used to achieve worst-case correctness error. One ap-
proach is to draw m and r directly from ψ, while setting the modulus q to be relatively large. The larger q
guarantees a high probability that all coefficients of p(gr+f ′m)+m are less than q/2 for nearly all possible
m and r in their spaces, although it causes inefficiency in terms of public key and ciphertext sizes. Indeed,
this approach has been used by the third-round finalist NTRU [10], wherein all recommended parameters
provide perfect correctness error (i.e., the worst-case correctness error becomes zero for all possible m and
r). By contrast, the other approach [16] is to use an encoding method by which a message m ∈ M′ is
used as a randomness to sample m and r according to ψ. Under the Fujisaki-Okamoto (FO) transform [18],
decrypting a ciphertext c requires re-encrypting m by following the same sampling process as encryption.
Thus, an ill-formed ciphertext that does not follow the sampling rule will always fail to be successfully
decrypted, implying that m and r should be honestly sampled by A according to ψ. Consequently, by dis-
allowing A to have control over m and r, the NTRU with an encoding method has a worst-case correctness
error that is close to an average-case error.

Based on the aforementioned observation, [16] proposed generic (average-case to worst-case) transfor-
mations2 that make the average-case correctness error of an underlying scheme nearly close to the worst-case
error of a transformed scheme. One of their transformations (denoted by ACWC) is based on an encoding
method called the generalized one-time pad (denoted by GOTP). Roughly speaking, GOTP works as fol-
lows: a message m ∈ M′ is first used to sample r and m1 according to ψ, and m2 = GOTP(m,G(m1))
using a hash function G, and then m is constructed as m1||m2. If the GOTP acts as a sampling function

1There is another way of creating the public key as h = pg/f , but we focus on setting h = pg/(pf ′ + 1) for a more efficient
decryption process.

2They proposed two transformations called ACWC0 and ACWC. In this paper, we focus on ACWC that does not expand the
size of a ciphertext.

7



Scheme NTRU[10] NTRU-B [16] NTRU+KEM

NTT-friendly No Yes Yes
Correctness error Perfect Worst-case Worst-case
(m, r)-encoding No Yes Yes

Message set m, r← {−1, 0, 1}n m← {−1, 0, 1}λ m← {0, 1}n
Message distribution Uniform/Fixed-weight Uniform Arbitrary

CCA transform DPKE + SXY variant ACWC + FO⊥KEM ACWC2 + FO
⊥
KEM

Assumptions NTRU, RLWE NTRU, RLWE NTRU, RLWE
Tight reduction Yes No Yes

n: polynomial degree of the ring. λ: length of the message. DPKE: deterministic public key encryption.

SXY variant: SXY transformation [32] described in the NTRU finalist.

Table 1: Comparison to previous NTRU constructions

wherein the output follows ψ, m and r are created from m following ψ, which can be verified in decryption
using the FO transform. Specifically, for two inputs m and G(m1) that are sampled from {−1, 0, 1}λ for
some integer λ, m2 ∈ {−1, 0, 1}λ is computed by doing the component-wise exclusive-or modulo 3 of two
ternary strings m and G(m1). Thus, if G(m1) follows a uniformly random distribution ψ over {−1, 0, 1}λ,
m is hidden from m2 because of the one-time pad property.

However, an ACWC based on the GOTP has two disadvantages in terms of security reduction and
message distribution. First, [16] showed that ACWC converts a one-way CPA (OW-CPA) secure underlying
scheme into a transformed one that is still OW-CPA secure, besides the fact that their security reduction
is loose3 by causing a security loss factor of qG, the number of random oracle queries. Second, ACWC
forces even a message m ∈ M′ to follow a specific distribution because their security analysis of ACWC
requires GOTP to have the additional randomness-hiding property, meaning that G(m1) should also be
hidden from the output m2. Indeed, the NTRU instantiation from ACWC, called ‘NTRU-B’ [16], requires
that m should be chosen uniformly at random fromM′ = {−1, 0, 1}λ. Notably, it is difficult to generate
exactly uniformly random numbers from {−1, 0, 1} in constant time due to rejection sampling. Therefore,
it was an open problem [16] to construct a new transformation that permits a different, more easily sampled
distribution of a message while relying on the same security assumptions.

1.1 Our Results

We propose a new practical NTRU construction called ‘NTRU+KEM’ that addresses the two drawbacks
of the previous ACWC. To achieve this, we introduce a new generic ACWC transformation, denoted as
ACWC2, which utilizes a simple encoding method. By using ACWC2, NTRU+KEM achieves a worst-
case correctness error close to the average-case error of the underlying NTRU. Additionally, NTRU+KEM
requires the message m to be drawn from M′ = {0, 1}n (for a polynomial degree n), following an ar-
bitrary distribution with high min-entropy, and is proven to be tightly secure under the same assumptions
as NTRU-B, the NTRU and RLWE assumptions. To achieve chosen-ciphertext security, NTRU+KEM re-
lies on a novel FO-equivalent transform without re-encryption, which makes the decryption algorithm of
NTRU+KEM faster than in the ordinary FO transform. In terms of efficiency, we use the idea from [30] to

3[16] introduced a new security notion, q-OW-CPA, which states that an adversary outputs a set Q with a maximum size of
q and wins if the correct message corresponding to a challenged ciphertext belongs to Q. We believe that q-OW-CPA causes a
security loss of q.

8



ACWC0[16] ACWC[16] ACWC2

Message encoding No GOTP SOTP

Message distribution Arbitrary Uniform Arbitrary
Ciphertext expansion Yes No No

Transformation OW-CPA→ IND-CPA OW-CPA→ OW-CPA OW-CPA→ IND-CPA
Tight reduction No No Yes

Underlying PKE Any Any Injective + MR + RR
MR: message-recoverable. RR: randomness-recoverable.

Table 2: Comparison to previous ACWC transformations

apply the Number Theoretic Transform (NTT) to NTRU+KEM and therefore instantiate NTRU+KEM over
a ring Rq = Zq[x]/⟨f(x)⟩, where f(x) = xn − xn/2 + 1 is a cyclotomic trinomial. By selecting appropri-
ate (n, q) and ψ, we suggest four parameter sets for NTRU+KEM and provide the implementation results
for NTRU+KEM in each parameter set. Table 1 lists the main differences between the previous NTRU
constructions [10, 16] and NTRU+KEM. In the following section, we describe our technique, focusing on
these differences.

ACWC2 Transformation with Tight Reduction. ACWC2 is a new generic transformation that allows for
the aforementioned average-case to worst-case correctness error conversion. However, to apply ACWC2, the
underlying scheme is required to have injectivity, randomness-recoverable (RR), and message-recoverable
(MR) properties, which are typical of NTRU.4 Additionally, ACWC2 involves an encoding method called
semi-generalized one-time pad (denoted by SOTP). In contrast to the GOTP in [16], SOTP = (Encode, Inv)
works in a generic sense as follows: first, a message m ∈ M′ is used to sample r based on ψ, and then
m = Encode(m,G(r)) is computed, where the coefficients follow ψ, using a hash function G. When de-
crypting a ciphertext c = Enc(pk,m; r) under a public key pk, m is recovered by a normal decryption
algorithm, and using m, r is also recovered by a randomness-recovery algorithm. Finally, an inverse of
Encode called Inv with G(r) and m yields m.

The MR property of an underlying scheme allows us to show that, without causing any security loss,
ACWC2 transforms an OW-CPA secure scheme into a chosen-plaintext (IND-CPA) secure scheme. The
proof idea is simple: unless an IND-CPA adversary A queries r to a (classical) random oracle G, A does
not obtain any information on mb (that A submits) for b ∈ {0, 1} because of the basic message-hiding
property of SOTP. However, whenever A queries ri to G for i = 1, · · · , qG, a reductionist can check
whether each ri is the randomness used for its OW-CPA challenge ciphertext using a message-recovery
algorithm. Therefore, the reductionist can find the exact ri among the qG number of queries if A queries ri
(with respect to its IND-CPA challenge ciphertext) to G. In this security analysis, it is sufficient for SOTP to
have the message-hiding property, which makes SOTP simpler than GOTP because GOTP must have both
message-hiding and randomness-hiding properties.

Table 2 presents a detailed comparison between previous ACWC transformations and our new ACWC2.
Unlike the previous ACWC based on GOTP, [16] proposed another generic ACWC transformation (denoted
by ACWC0) without using any message-encoding method. In ACWC0, a (bit-string) messagem is encrypted
with a ciphertext c = (Enc(pk,m; r),F(m) ⊕ m) using a hash function F, which causes the ciphertext
expansion of F(m)⊕m, whereas such a ciphertext redundancy does not occur in ACWC and ACWC2. Like

4In the decryption of NTRU with pk = h, given (pk, c,m), r is recovered as r = (c−m)h−1. Similarly, given (pk, c, r), m
is recovered as m = c− hr.
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OW-CPA
PKE

IND-CPA
PKE

IND-CCA
KEM

IND-CCA
KEM

GenNTRU[ψn
1 ] CPA-NTRU+ CCA-NTRU+KEM NTRU+KEM

ACWC2
FO⊥

KEM FO
⊥
KEM

Th. 3.5 (ROM) Th. 4.1 (ROM)

Th. 3.6 (QROM) Th. 4.2 (QROM)
L. 4.3

average-case
correctness error ≈ worst-case

correctness error w/ re-encryption w/o re-encryption

: tight security reduction : non-tight security reduction : tight security equivalence

Figure 1: Overview of security reductions for KEM

ACWC2, ACWC0 transforms any OW-CPA secure scheme into an IND-CPA secure one, but their security
reduction is not tight as in ACWC. ACWC0 and ACWC2 requires no specific message distribution, whereas
ACWC requires m ∈ M′ to be sampled according to a uniformly random distribution fromM′. ACWC0

and ACWC work for any OW-CPA secure scheme, but ACWC2 works for any OW-CPA secure scheme
satisfying injectivity, MR, and RR properties.

FO-Equivalent Transform without Re-encryption. To achieve chosen-ciphertext (IND-CCA) security,
we apply the generic transform FO⊥KEM to the ACWC2-derived scheme, which is IND-CPA secure. As
with other FO-transformed schemes, the resulting scheme from ACWC2 and FO⊥KEM is still required to
perform re-encryption in the decryption process to check if (1) (m, r) are correctly generated from m and
(2) a (decrypted) ciphertext c is correctly encrypted from (m, r). However, by using the RR property
of the underlying scheme, we further remove the re-encryption process from FO⊥KEM. Instead, the more
advanced transform (denoted by FO

⊥
KEM) simply checks whether r from the randomness-recovery algorithm

is the same as the (new) randomness r′ created from m. We show that FO
⊥
KEM is functionally identical

to FO⊥KEM by proving that the randomness-checking process in FO
⊥
KEM is equivalent to the re-encryption

process FO⊥KEM. The equivalence proof relies mainly on the injectivity [7, 21] and rigidity [6] properties of
the underlying schemes. As a result, although the RR property seems to incur some additional decryption
cost, it ends up making the decryption algorithm faster than the original FO transform. Figure 1 presents an
overview of security reductions from OW-CPA to IND-CCA.

Simple SOTP Instantiation with More Convenient Sampling Distributions. As mentioned previously,
ACWC2 is based on an efficient construction of SOTP = (Encode, Inv) that takes m and G(r) as inputs
and outputs m = Encode(m,G(r)). In particular, computing m = Encode(m,G(r)) requires that each
coefficient of m should follow ψ, while preserving the message-hiding property. To achieve this, we set
ψ as the centered binomial distribution (CBD) ψk with k = 1, which is easily obtained by subtracting
two uniformly random bits from each other. For a polynomial degree n and hash function G : {0, 1}∗ →
{0, 1}2n, m is chosen from the message spaceM′ = {0, 1}n for an arbitrary distribution (with high min-
entropy) and G(r) = y1||y2 ∈ {0, 1}n × {0, 1}n. SOTP then computes m̃ = (m ⊕ y1) − y2 by bitwise
subtraction and assigns each subtraction value of m̃ to the coefficient of m. By the one-time pad property,
it is easily shown that m ⊕ y1 becomes uniformly random in {0, 1}n (and thus message-hiding) and each
coefficient of m follows ψ1. Since r is also sampled from a hash value of m according to ψ1, all sampling
distributions in NTRU+KEM are easy to implement. We can also expect that, similar to the case of ψ1, the
SOTP is expanded to sample a centered binomial distribution reduced modulo 3 (i.e., ψ2) by summing up
and subtracting more uniformly random bits.
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NTT-Friendly Rings Over Cyclotomic Trinomials. NTRU+KEM is instantiated over a polynomial ring
Rq = Zq[x]/⟨f(x)⟩, where f(x) = xn−xn/2+1 is a cyclotomic trinomial of degree n = 2i3j . [30] showed
that, with appropriate parameterization of n and q, such a ring can also provide NTT operation essentially
as fast as that over a ring Rq = Zq[x]/⟨xn + 1⟩. Moreover, because the choice of a cyclotomic trinomial is
moderate, it provides more flexibility to satisfy a certain level of security. Based on these results, we choose
four parameter sets for NTRU+KEM, where the polynomial degree n of f(x) = xn − xn/2 + 1 is set to be
576, 768, 864, and 1152, and the modulus q is 3457 for all cases. Table 7 lists the comparison results between
finalist NTRU [10], KYBER, KYBER-90s [33], and NTRU+ in terms of security and efficiency. To estimate
the concrete security level of NTRU+KEM, we use the Lattice estimator [1] for the RLWE problem and the
NTRU estimator [10] for the NTRU problem, considering that all coefficients of each polynomial f ′, g, r,
and m are drawn according to the centered binomial distribution ψ1. The implementation results in Table
7 are estimated with reference and AVX2 optimizations. We can observe that NTRU+KEM outperforms
NTRU at a similar security level.

1.2 Related Works

The first-round NTRUEncrypt [39] submission to the NIST PQC standardization process was an NTRU-
based encryption scheme with the NAEP padding method [24]. Roughly speaking, NAEP is similar to our
SOTP, but the difference is that it does not completely encode m to prevent an adversary A from choosing
m maliciously. This is due to the fact that m := NAEP(m,G(hr)) is generated by subtracting two n-bit
stringsm and G(hr) from each other, i.e., m−G(hr) by bitwise subtraction, and then assigning them to the
coefficients of m. Since m can be maliciously chosen by A in NTRUEncrypt, m can also be maliciously
chosen, regardless of G(hr).

The finalist NTRU [10] was submitted as a key encapsulation mechanism (KEM) that provides four
parameter sets for perfect correctness. To achieve chosen-ciphertext security, [10] relied on a variant of
the SXY [32] conversion, which also avoids re-encryption during decapsulation. Similar to NTRU+KEM,
the SXY variant requires the rigidity [6] of an underlying scheme and uses the notion of deterministic
public key encryption (DPKE) where (m, r) are all recovered as a message during decryption. In the
NTRU construction, the recovery of r is conceptually the same as the existence of the randomness-recovery
algorithm RRec. Instead of removing re-encryption, the finalist NTRU needs to check whether (m, r) are
selected correctly from predefined distributions.

In 2019, Lyubashevsky et al. [30] proposed an efficient NTRU-based KEM called NTTRU by applying
NTT to the ring defined by a cyclotomic trinomial Zq[x]/⟨xn−xn/2+1⟩. NTTRU was based on the Dent [14]
transformation without any encoding method, which resulted in an approximate worst-case correctness error
of 2−13, even with an average-case error of 2−1230. To overcome this significant difference, NTTRU was
modified to reduce the message space of the underlying scheme, while increasing the size of the ciphertext.
This modification was later generalized to ACWC0 in [16].

In 2021, Duman et al. [16] proposed two generic transformations, ACWC0 and ACWC, which aim to
make the average-case correctness error of an underlying scheme nearly equal to the worst-case error of
the transformed scheme. Specifically, ACWC introduced GOTP as an encoding method to prevent A from
adversarially choosing m. While ACWC0 is simple, it requires a ciphertext expansion of 32 bytes. On
the other hand, ACWC does not requires an expansion of the ciphertext size. The security of ACWC0 and
ACWC was analyzed in both the classical and quantum random oracle models [16]. However, their NTRU
instantiation using ACWC has the drawback of requiring the message m to be chosen from a uniformly
random distribution overM′ = {−1, 0, 1}λ.
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2 Preliminaries

2.1 Basic Notations

The set Zq is defined as {−(q− 1)/2, . . . , (q− 1)/2}, where q is a positive odd integer. Mapping an integer
a from Z to Zq uses the modulo operation, setting x = a mod q as the unique integer in Zq satisfying
q | (x − a). The polynomial ring Rq is defined as Zq[x]/⟨f(x)⟩ with a polynomial f(x). Cyclotomic
trinomials Φ3n(x) = xn − xn/2 +1 where n = 2i · 3j for some positive integers i and j are used as f(x) in
our construction. Polynomials in Rq are denoted in non-italic bold as a, with ai as the i-th coefficient.

For sampling, u ← X indicates that u is sampled uniformly at random from a set X , and u ← D indi-
cates that u is drawn according to a distribution D. The notation u ← Dℓ forms a vector u = (u1, . . . , uℓ)
with each ui drawn independently from D. Especially, a ← D indicates that all coefficients of a polyno-
mial a is drawn according to a distribution D. Sampling from the centered binomial distribution (CBD) ψk
involves 2k bits that are independent and uniformly random, summing the first k bits and the second k bits
separately, then outputting their difference.

2.2 Public Key Encryption

Definition 2.1 (Public-Key Encryption). A public key encryption scheme PKE = (Gen,Enc,Dec) with
message spaceM, randomness spaceR, and ciphertext space C consists of the following three algorithms:

• Gen(1λ): The key generation algorithm Gen is a randomized algorithm that takes a security parameter
1λ as input and outputs a pair of public/secret keys (pk, sk).

• Enc(pk,m; r): The encryption algorithm Enc is a randomized algorithm that takes a public key pk,
a message m ∈ M, and randomness r ∈ R as input and outputs a ciphertext c ∈ C. We often write
Enc(pk,m) to denote the encryption algorithm without explicitly mentioning the randomness.

• Dec(sk, c): The decryption algorithm Dec is a deterministic algorithm that takes a secret key sk and a
ciphertext c ∈ C as input and outputs either a message m ∈M or a special symbol⊥/∈M to indicate
that c is not a valid ciphertext.

Correctness. We say that PKE has a (worst-case) correctness error δ [21] if

E
[
max
m∈M

Pr[Dec(sk,Enc(pk,m)) ̸= m]

]
≤ δ,

where the expectation is taken over (pk, sk) ← Gen(1λ) and the choice of the random oracles involved (if
any). We say that PKE has an average-case correctness error δ relative to the distribution ψM overM if

E [Pr [Dec(sk,Enc(pk,m)) ̸= m]] ≤ δ,

where the expectation is taken over (pk, sk)← Gen(1λ), the choice of the random oracles involved (if any),
and m← ψM.

Injectivity. Injectivity of PKE is defined via the following GAME INJ, which is shown in Figure 2, and
the relevant advantage of adversary A is

AdvINJPKE(A) = Pr[INDAPKE ⇒ 1].

Unlike the definition of injectivity in [7, 21], we define the injectivity in a computationally-secure sense.
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GAME INJ

1: (pk, sk)← Gen(1λ)
2: (m, r,m′, r′)← A(pk)
3: c = Enc(pk,m; r)
4: c′ = Enc(pk,m′; r′)
5: return J(m, r) ̸= (m′, r′) ∧ c = c′K

Figure 2: GAME INJ for PKE

Spreadness. PKE is γ-spread [21] if

min
m∈M,(sk,pk)

(
− logmax

c∈C
Pr

r←ψR
[c = Enc(pk,m; r)]

)
≥ γ,

where the minimum is taken over all key pairs that can be generated by Gen. This definition can be relaxed
by considering an expectation over the choice of (pk, sk). PKE is weakly γ-spread [15] if

− logE
[

max
m∈M,c∈C

Pr
r←ψR

[c = Enc(pk,m; r)]

]
≥ γ,

where the expectation is over (pk, sk)← Gen(1λ).

Randomness recoverability. PKE is defined as randomness recoverable (RR) if there is an algorithm
RRec such that for all (pk, sk)← Gen(1λ), m ∈M, and r ∈ R,

Pr
[
∀m′ ∈ Prem(pk, c) : RRec(pk,m′, c) /∈ R

∨Enc(pk,m′;RRec(pk,m′, c)) ̸= c|c← Enc(pk,m; r)
]
= 0,

where the probability is taken over c ← Enc(pk,m; r) and Prem(pk, c) defined as {m ∈ M| ∃r ∈ R :
Enc(pk,m; r) = c}.

Message Recoverability. PKE is defined as message recoverable (MR) if an algorithm MRec exists such
that for all (pk, sk)← Gen(1λ), m ∈M, and r ∈ R,

Pr
[
∀r′ ∈ Prer(pk, c) :MRec(pk, r′, c) /∈M

∨Enc(pk,MRec(pk, r′, c); r′) ̸= c|c← Enc(pk,m; r)
]
= 0,

where the probability is calculated over c← Enc(pk,m; r) and Prer(pk, c) defined as {r ∈ R|∃m ∈ M :
Enc(pk,m; r) = c}.

Rigidity. PKE is said to be rigid if, for all key pairs (pk, sk)← Gen(1λ) and for any ciphertext c ∈ C, the
following holds:

If m′ = Dec(sk, c) ∈M and r′ = RRec(pk,m′, c) ∈ R, then Enc(pk,m′; r′) = c.
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Definition 2.2 (OW-CPA Security of PKE). Let PKE = (Gen, Enc, Dec) be a public-key encryption scheme
with message space M. Onewayness under chosen-plaintext attacks (OW-CPA) for message distribution
ψM is defined via the GAME OW-CPA, which is shown in Figure 3, and the advantage function of adversary
A is

AdvOW-CPA
PKE (A) := Pr

[
OW-CPAAPKE ⇒ 1

]
.

Definition 2.3 (IND-CPA Security of PKE). Let PKE = (Gen, Enc, Dec) be a public-key encryption scheme
with message space M. Indistinguishability under chosen-plaintext attacks (IND-CPA) is defined via the
GAME IND-CPA, as shown in Figure 3, and the advantage function of adversary A is

AdvIND-CPA
PKE (A) :=

∣∣∣∣Pr [IND-CPAAPKE ⇒ 1
]
− 1

2

∣∣∣∣ .
Definition 2.4 (IND-CCA Security of PKE). Let PKE = (Gen, Enc, Dec) be a public-key encryption scheme
with message spaceM. Indistinguishability under chosen ciphertext attacks (IND-CCA) is defined via the
GAME IND-CCA, as shown in Figure 3, and the advantage function of adversary A is

AdvIND-CCA
PKE (A) :=

∣∣∣∣Pr [IND-CCAAPKE ⇒ 1
]
− 1

2

∣∣∣∣ .
GAME OW-CPA

1: (pk, sk)← Gen(1λ)
2: m← ψM
3: c∗ ← Enc(pk,m)
4: m′ ← A(pk, c∗)
5: return Jm = m′K

GAME IND-CPA
1: (pk, sk)← Gen(1λ)
2: (m0,m1)← A0(pk)
3: b← {0, 1}
4: c∗ ← Enc(pk,mb)
5: b′ ← A1(pk, c

∗)
6: return Jb = b′K

GAME IND-CCA
1: (pk, sk)← Gen(1λ)
2: (m0,m1)← ADec

0 (pk)
3: b← {0, 1}
4: c∗ ← Enc(pk,mb)
5: b′ ← ADec

1 (pk, c∗)
6: return Jb = b′K

Dec(c ̸= c∗)

1: return Dec(sk, c)

Figure 3: GAMES OW-CPA, IND-CPA, and IND-CCA for PKE

2.3 Key Encapsulation Mechanism

Definition 2.5 (Key Encapsulation Mechanism). A key encapsulation mechanism KEM = (Gen, Encap,
Decap) with a key space K consists of the following three algorithms:

• Gen(1λ): The key generation algorithm Gen is a randomized algorithm that takes a security parameter
λ as input and outputs a pair of public key and secret key, (pk, sk).
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• Encap(pk): The encapsulation algorithm Encap is a randomized algorithm that takes a public key pk
as input, and outputs a ciphertext c and a key K ∈ K.

• Decap(sk, c): The decryption algorithm Decap is a deterministic algorithm that takes a secret key sk
and ciphertext c as input, and outputs either a key K ∈ K or a special symbol ⊥/∈ K to indicate that c
is not a valid ciphertext.

Correctness. We say that KEM has a correctness error δ if

Pr[Decap(sk, c) ̸= K|(c,K)← Encap(pk)] ≤ δ,

where the probability is taken over the randomness in Encap and (pk, sk)← Gen(1λ).

Definition 2.6 (IND-CCA Security of KEM). Let KEM = (Gen, Encap, Decap) be a key encapsulation
mechanism with a key space K. Indistinguishability under chosen-ciphertext attacks (IND-CCA) is defined
via the GAME IND-CCA, as shown in Figure 4, and the advantage function of adversary A is as follows:

AdvIND-CCA
KEM (A) :=

∣∣∣∣Pr [IND-CCAAKEM ⇒ 1
]
− 1

2

∣∣∣∣ .
Game IND-CCA

1: (pk, sk)← Gen(1λ)
2: (K0, c

∗)← Encap(pk)
3: K1 ← K
4: b← {0, 1}
5: b′ ← ADecap(pk, c∗,Kb)
6: return Jb = b′K

Decap(c ̸= c∗)

1: return Decap(sk, c)

Figure 4: GAME IND-CCA for KEM

2.4 Complexity Assumptions

This section outlines complexity assumptions used in NTRU+{KEM,PKE}. Specifically, it introduces the
NTRU and RLWE problems. Unlike the RLWE problem used in ElGamal-type schemes [2], RLWE here is
defined in the computational sense.

Definition 2.7 (The NTRU problem [20]). Let ψ be a distribution over Rq. The NTRU problem NTRUn,q,ψ
is to distinguish h = g(pf ′ + 1)−1 ∈ Rq from u ∈ Rq, where f ′,g ← ψ and u ← Rq. The advantage of
adversary A in solving NTRUn,q,ψ is defined as follows:

AdvNTRUn,q,ψ (A) = Pr[A(h) = 1]− Pr[A(u) = 1].

Definition 2.8 (The RLWE problem [29]). Let ψ be a distribution over Rq. The RLWE problem RLWEn,q,ψ
is to find s from (a,b = as+ e) ∈ Rq ×Rq, where a ← Rq, s, e ← ψ. The advantage of an adversary A
in solving RLWEn,q,ψ is defined as follows:

AdvRLWE
n,q,ψ (A) = Pr[A(a,b) = s].
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2.5 Proof Tools for QROM

Unlike the traditional ROM, the QROM must handle outputs for superpositioned inputs, making it chal-
lenging to directly apply ROM proof techniques like adaptive programming and security proofs using hash
tables [8]. This section introduces essential proof tools for QROM security analysis that circumvent these
constraints: the O2H lemma [37] and the extractable random oracle simulator [15].

2.5.1 One-way to Hiding

The O2H lemma, first introduced by D. Unruh [37], serves as a important proof tool for the QROM. This
lemma quantifies the advantage of a quantum adversary in distinguishing between two scenarios: one that
uses random oracle outputs for specific inputs and another that uses truly random values. The fundamental
idea is that the probability of an adversary successfully measuring the specific input, for which the hash
function output has been replaced with a truly random value, bounds the advantage between these two
scenarios. In the ROM, the corresponding concept is the difference lemma proposed by Victor Shoup [35],
which similarly analyzes the differences between two games but is applicable in a classical context. This
subsection outlines the variations of the O2H lemma used in the security proofs presented in this work.

Lemma 2.9 (Adaptive O2H, Lemma 14 of [36]). Let H : {0, 1}∗ → {0, 1}n be a random oracle. Consider
an oracle algorithmA1 that uses the final state ofA0 and makes at most q1 queries to H. Let C1 be an oracle
algorithm that on input (j, B, x) does the following: run AH

1 (x,B) until (just before) the j-th query, measure
the argument of the query in the computational basis, output the measurement outcome. (When A makes
less than j queries, C1 outputs ⊥/∈ {0, 1}∗.) Let

P 1
A := Pr[b′ = 1 : H← ({0, 1}∗ → {0, 1}n),m← AH

0 (), x← {0, 1}
ℓ,

b′ ← AH
1 (x,H(x∥m))],

P 2
A := Pr[b′ = 1 : H← ({0, 1}∗ → {0, 1}n),m← AH

0 (), x← {0, 1}
ℓ,

B ← {0, 1}n, b′ ← AH
1 (x,B)],

PC := Pr[x = x′ ∧m = m′ : H← ({0, 1}∗ → {0, 1}n),m← AH
0 (), x← {0, 1}

ℓ,

B ← {0, 1}n, j ← {1, ..., q1}, x′||m′ ← CH1 (j, B, x)].

Then
∣∣P 1
A − P 2

A
∣∣ ≤ 2q1

√
PC + q02

−ℓ/2+2.

Lemma 2.10 (Classical O2H, Theorem 3 from the eprint version of [3]). Let S ⊂ R be random. Let G and
F be random functions satisfying ∀r /∈ S : G(r) = F(r). Let z be a random classical value (S, G, F, z may
have an arbitrary joint distribution). Let C be a quantum oracle algorithm with query depth qG, expecting
input z. Let D be the algorithm that, on input z, samples a uniform i from {1, ..., qG}, runs C right before its
i-th query to F, measures all query input registers, and outputs the set T of measurement outcomes. Then∣∣∣Pr[CG(z)⇒ 1]− Pr[CF(z)⇒ 1]

∣∣∣ ≤ 2qG

√
Pr[S ∩ T ̸= ∅ : T ← DF(z)].

2.5.2 Extractable RO-Simulator S

The extractable random oracle simulator, proposed by J. Don et al. [15], is another important proof tool for
security proofs in QROM. It addresses challenges in retrieving hash inputs from superpositioned queries.
This random oracle simulator is indistinguishable from a real random oracle and can extract queried inputs
under specific conditions, thereby enabling security proofs in the QROM settings.
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Definition 2.11. For a function f : X × {0, 1}n → T , define

Γ (f) := max
x,t
|{y | f(x, y) = t}| and Γ ′(f) := max

x ̸=x′,y′

∣∣{y | f(x, y) = f(x′, y′)}
∣∣ .

Theorem 2.12 (Theorem 4.3 of [15]). The extractable RO-simulator S constructed above, with interfaces
S.RO and S.E, satisfies the following properties.

1. If S.E is unused, S is perfectly indistinguishable from the random oracle RO.

2. (a) Any two subsequent independent queries to S.RO commute. In particular, two subsequent
classical S.RO-queries with the same input x give identical responses.

(b) Any two subsequent independent queries to S.E commute. In particular, two subsequent classi-
cal S.E-queries with the same input t give identical responses.

(c) Any two subsequent independent queries to S.E and S.RO 8
√
2Γ (f)/2n-almost-commute.

3. (a) Any classical query S.RO(x) is idempotent.

(b) Any classical query S.E(t) is idempotent.

4. (a) If x̂ = S.E(t) and ĥ = S.RO(x̂) are two subsequent classical queries then

Pr[f(x̂, ĥ) ̸= t ∧ x̂ ̸= ∅] ≤ Pr[f(x̂, ĥ) ̸= t|x̂ ̸= ∅] ≤ 2 · 2−nΓ (f).

(b) If h = S.RO(x) and x̂ = S.E(f(x, h)) are two subsequent classical queries such that no prior
query to S.E has been made, then

Pr[x̂ = ∅] ≤ 2 · 2−n.

Furthermore, the total runtime of S, when implemented using the sparse representation of the compressed
oracle, is bounded as

TS = O(qRO · qE · Time[f ] + q2RO),

where qE and qRO are the number of queries to S.E and S.RO, respectively.

Theorem 2.13 (Proposition 4.4. of [15]). Let R′ ⊆ X ×T be a relation. Consider a query algorithmA that
makes q queries to the S.RO interface of S but no query to S.E, outputting some t ∈ T ℓ . For each i, let
x̂i then be obtained by making an additional query to S.E on input ti. Then

Pr
t←AS.RO,x̂i←S.E(ti)

[∃i : (x̂i, ti) ∈ R′] ≤ 128 · q2ΓR/2n,

where R ⊆ X × Y is the relation (x, y) ∈ R⇔ (x, f(x, y)) ∈ R′ and

ΓR := max
x∈X
|{y ∈ {0, 1}n|(x, y) ∈ R}| .
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3 ACWC2 Transformation

We introduce our new ACWC transformation ACWC2 by describing ACWC2[PKE, SOTP,G] for a hash
function G, as shown in Figure 5. Let PKE′ = ACWC2[PKE, SOTP, G] be the resulting encryption scheme.
By applying ACWC2 to an underlying PKE, we prove that (1) PKE′ has a worst-case correctness error that
is essentially close to the average-case error of PKE, and (2) PKE′ is tightly IND-CPA secure if PKE is
OW-CPA secure.

3.1 SOTP

Definition 3.1. A semi-generalized one-time pad SOTP = (Encode, Inv) with a message spaceX , a random
space U (with corresponding distribution ψU ), and a code space Y (with corresponding distribution ψY )
consists of the following two algorithms:

• Encode(x, u) : The encoding algorithm Encode is a deterministic algorithm that takes a message
x ∈ X and random u ∈ U as input, and outputs a code y ∈ Y .

• Inv(y, u) : The decoding algorithm Inv is a deterministic algorithm that takes a code y ∈ Y and
random u ∈ U as input, and outputs a message x ∈ X ∪ {⊥}.

It also follows three properties as follows:

1. Decoding: For all x ∈ X , u ∈ U , Inv(Encode(x, u), u) = x.

2. Message-hiding: For all x ∈ X , the random variable Encode(x, u), for u ← ψU , has the same
distribution as ψY .

3. Rigid: For all u ∈ U , y ∈ Y with Inv(y, u) ̸=⊥, Encode(Inv(y, u), u) = y.

In contrast to the GOTP defined in [16], SOTP does not need to have an additional randomness-hiding
property, which requires that the output y = Encode(x, u) follows the distribution ψY and simultaneously
does not leak any information about the randomness u. The absence of such an additional property allows
us to design SOTP more flexibly and efficiently than GOTP. Instead, SOTP is required to be rigid, which
means that for all u ∈ U and y ∈ Y , x = Inv(y, u) ̸=⊥ implies that Encode(x, u) = y.

3.2 ACWC2

Let PKE = (Gen,Enc,Dec) be an underlying public key encryption scheme with message space M and
randomness space R, where a message M ∈ M and randomness r ∈ R are drawn from the distributions
ψM and ψR, respectively. Similarly, let PKE′ = (Gen′,Enc′,Dec′) be a transformed encryption scheme
with message space M′ and randomness space R′. Let SOTP = (Encode, Inv) with Encode : M′ ×
U → M and Inv : M × U → M′ be a semi-generalized one-time pad for distributions ψU and ψM,
and let G : R → U be a hash function such that every output is independently ψU -distributed. Then
PKE′ = ACWC2[PKE, SOTP,G] is described in Figure 5.

Under the condition that Dec(sk, c) in Dec′ yields the same M as in Enc, the deterministic RRec and
Inv functions do not affect the correctness error of PKE′. Thus, the factor that determines the success or
failure of Dec′(sk, c) is the result of Dec(sk, c) in Dec′. This means that the correctness error of PKE is
straightforwardly transferred to that of PKE′, and eventually determined by how randomness r ∈ R and
message M ∈ M are sampled in PKE′. We see that r is drawn according to the distribution ψR and M
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Gen′(1λ)

1: (pk, sk) := Gen(1λ)
2: return (pk, sk)

Enc′(pk,m ∈M′;R ∈ R′)
1: r ← ψR using the randomness R
2: M := Encode(m,G(r))
3: c := Enc(pk,M ; r)
4: return c

Dec′(sk, c)

1: M := Dec(sk, c)
2: r := RRec(pk,M, c)
3: m := Inv(M,G(r)))
4: if r /∈ R or m =⊥, return ⊥
5: return m

Figure 5: ACWC2[PKE,SOTP,G]

is an SOTP-encoded element in M. Because every output of G is independently ψU -distributed, we can
expect that the message-hiding property of SOTP makes M follow the distribution ψM while hiding m.
Eventually, both M and r are chosen according to their respective initially-intended distributions.

However, since the choice of the random oracle G can affect the correctness error of PKE′, we need
to include this observation in the analysis of the correctness error. Theorem 3.2 shows that for all but a
negligible fraction of random oracles G, the worst-case correctness of PKE′ (transformed by ACWC2) is
close to the average-case correctness of PKE. This is the same idea as in ACWC, and the proof strategy of
Theorem 3.2 is essentially the same as that of [16] (Lemma 3.6 therein), except for slight modifications to
the message distribution.

Theorem 3.2 (Average-Case to Worst-Case Correctness error). Let PKE be RR and have a randomness
space R relative to the distribution ψR. Let SOTP = (Encode, Inv) with SOTP : M′ × U → M and
SOTP :M×U →M′ be a semi-generalized one-time pad (for distributions ψU , ψM), and let G : R → ψU
be a random oracle. If PKE is δ-average-case-correct, then PKE′ := ACWC2[PKE, SOTP,G] is δ′-worst-
case-correct for

δ′ = δ + ∥ψR∥ ·
(
1 +

√
(ln |M′| − ln∥ψR∥)/2

)
,

where ∥ψR∥ :=
√∑

r ψR(r)
2.

Proof. With the expectation over the choice of G and (pk, sk) ← Gen(1λ), the worst-case correctness of
the PKE′ is

δ′ = E
[
max
m∈M′

Pr[Dec′(sk,Enc′(pk,m)) ̸= m]

]
= E[δ′(pk, sk)],

where δ′(pk, sk) := E[maxm∈M′ Pr[Dec′(sk,Enc′(pk,m)) ̸= m] is the expectation taken over the choice
of G, for a fixed key pair (pk, sk). For any fixed key pair and any positive real t ∈ R+, we have

δ′(pk, sk) = E[ max
m∈M′

Pr
[
Dec′(sk,Enc′(pk,m)) ̸= m]

]
≤ t+ Pr

G

[
max
m∈M′

Pr[Dec′(sk,Enc′(pk,m)) ̸= m] ≥ t
]

≤ t+ Pr
G

[
max
m∈M′

Pr
r
[Dec′(sk,Enc(pk,M ; r)) ̸= m] ≥ t

]
, (1)
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where M = Encode(m,G(r)). Note that the first inequality holds by Lemma 3.3.
For any fixed key pair and any real c, let t(pk, sk) := µ(pk, sk) + ∥ψR∥ ·

√
(c+ ln |M′|)/2, where

µ(pk, sk) := PrM,r[Dec(sk,Enc(pk,M ; r)) ̸=M ]. Then, we can use the helper Lemma 3.4 to argue that

Pr
G

[
max
m∈M′

Pr
r
[Dec′(sk,Enc(pk,M ; r)) ̸= m] > t(pk, sk)

]
≤ e−c. (2)

To this end, we define g(m, r, u) and B as g(m, r, u) = (Encode(m,u), r) and B = {(M, r) ∈
|Dec(sk,Enc(pk,M ; r)) ̸= M}, which will be used in Lemma 3.4. Note that Prr←ψR,u←ψU [g(m, r, u) ∈
B] = µ(pk, sk) holds for all m ∈M′ by the message-hiding property of the SOTP. For all m ∈M′,

Pr
r←ψR,u←ψU

[g(m, r, u) ∈ B]

= Pr
r←ψR,u←ψU

[(Encode(m,u), r) ∈ B]

= Pr
r←ψR,M←ψM

[(M, r) ∈ B]

= Pr
r←ψR,M←ψM

[Dec(sk,Enc(pk,M ; r) ̸=M ]

= µ(pk, sk).

Combining Equation (2) with Equation (1) and taking the expectation yields

δ′ ≤ E
[
µ(pk, sk) + ∥ψR∥ ·

√
(c+ ln |M′|)/2 + e−c

]
= δ + ∥ψR∥ ·

√
(c+ ln |M′|)/2 + e−c,

and setting c := − ln∥ψR∥ yields the claim in the theorem.

Lemma 3.3. Let X be a random variable and let f be a non-negative real-valued function with f(X) ≤ 1.
Then,

E[f(X)] ≤ t+ Pr[f(X) ≥ t]

for all positive real t ∈ R+.

Proof. By using the law of total probability and by partitioning all possible values of x into conditions
satisfying either f(x) < t or f(x) ≥ t, we can achieve the required inequality as follows:

E[f(X)] =
∑

f(x) Pr[X = x]

=
∑
f(x)<t

f(x) Pr[X = x] +
∑
f(x)≥t

f(x) Pr[X = x]

≤
∑
f(x)<t

tPr[X = x] +
∑
f(x)≥t

f(x) Pr[X = x]

≤ t+
∑
f(x)≥t

f(x) Pr[X = x]

≤ t+
∑
f(x)≥t

Pr[X = x] = t+ Pr[f(X) ≥ t]

The last equality can be checked by
∑

f(x)≥t Pr[X = x] = Pr[f(X) ≥ t].
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Lemma 3.4 (Adapting Lemma 3.7 from [16]). Let g be a function, and B be some set such that

∀m ∈M′, Pr
r←ψR,u←ψU

[g(m, r, u) ∈ B] ≤ µ (3)

for some µ ∈ [0, 1]. Let G : R → U be a random function such that every output is independently ψU -

distributed. Define ∥ψR∥ =
√∑

r ψR(r)
2. Then, for all but an e−c fraction of random functions G, we

have that ∀m ∈M′,

Pr
r←ψR

[g(m, r,G(r)) ∈ B] ≤ µ+ ∥ψR∥ ·
√
(c+ ln |M′|)/2

for some positive c ∈ R+.

Proof. Let us fix a specific m ∈ M′, and for each r ∈ R, define pr := Pru←ψU [g(m, r, u) ∈ B]. By
the assumption of g in Equation (3), we know that

∑
r ψR(r)pr ≤ µ. For each r, define a random vari-

able Xr whose value is determined as follows: G chooses a random u = G(r) and then checks whether
g(m, r,G(r)) ∈ B; if it does, then we set Xr = 1; otherwise we set it to zero. Because G is a random
function, the probability that Xr = 1 is exactly pr.

The probability of Equation (4) for our particular m is the same as the sum
∑

r ψR(r)Xr, and we use
the Hoeffding bound to show that this value is not significantly larger than µ. We define the random variable
Yr = ψR(r)Xr. Notice that Yr ∈ [0, ψR(r)], and E[

∑
Yr] = E[

∑
r ψR(r)Xr] =

∑
r ψR(r)pr ≤ µ. By

the Hoeffding bound, we have for all positive t,

Pr[
∑
r

Yr > µ+ t] ≤ exp
(
−2t2∑
ψR(r)

2

)
= exp

(
−2t2

∥ψR∥2

)
. (4)

By setting t ≥ ∥ψ∥·
√

(c+ ln |M′|)/2, for a fixedm, Equation (4) holds for all but an e−c · |M′|−1 fraction
of random functions G. Applying the union bound yields the claim in the lemma.

Theorem 3.5 (OW-CPA of PKE ROM
=⇒ IND-CPA of ACWC2[PKE, SOTP,G]). Let PKE be a public key

encryption scheme with RR and MR properties. For any adversary A against the IND-CPA security of
ACWC2[PKE, SOTP,G], making at most qG random oracle queries, there exists an adversary B against the
OW-CPA security of PKE and adversary C against the injectivity of PKE with

AdvIND-CPA
ACWC2[PKE,SOTP,G](A) ≤ AdvOW-CPA

PKE (B) + AdvINJPKE(C),

where the running time of B is about Time(A) +O(qG).

Proof. We show that there exists an algorithm B (see Figure 7) which breaks the OW-CPA security of PKE
using an algorithm A = (A0,A1) that breaks the IND-CPA security of ACWC2[PKE, SOTP,G].
GAME G0. G0 (see Figure 6) is the original IND-CPA game with ACWC2[PKE,SOTP,G]. In G0, A is
given the challenge ciphertext c∗ := Enc(pk,M∗; r∗) for some unknown message M∗ and randomness r∗.
By the definition of the IND-CPA game, we have∣∣∣∣Pr[GA0 ⇒ 1]− 1

2

∣∣∣∣ = AdvIND-CPA
ACWC2[PKE,SOTP,G](A).
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Game G0

1: G← (R → U)
2: (pk, sk)← Gen(1λ)
3: (m0,m1)← AG

0 (pk)
4: b← {0, 1}
5: r∗ ← ψR
6: M∗ = Encode(mb,G(r

∗))
7: c∗ ← Enc(pk,M∗; r∗)
8: b′ ← AG

1 (pk, c
∗)

9: return Jb = b′K

Figure 6: GAME G0 of Theorems 3.5 and 3.6

B(pk, c∗)
1: LG,Lr := ∅
2: b← {0, 1}
3: (m0,m1)← AG

0 (pk)
4: b′ ← AG

1 (pk, c
∗)

5: for r ∈ Lr do
6: M := MRec(pk, r, c∗)
7: if M ∈M
8: return M
9: return M ← ψM

G(r)

1: if ∃(r, u) ∈ LG
2: return u
3: else
4: u← ψU
5: LG := LG ∩ {(r, u)}
6: Lr := Lr ∩ {r}
7: return u

Figure 7: Adversary B for the proof of Theorem 3.5

GAME G1. G1 is the same as G0, except that we abort G1 whenA queries two distinct r∗1 and r∗2 to G, such
that MRec(pk, r∗1, c

∗) and MRec(pk, r∗2, c
∗) ∈ M. This leads to breaking the injectivity of the PKE. Thus,

we have ∣∣Pr[GA1 ⇒ 1]− Pr[GA0 ⇒ 1]
∣∣ ≤ AdvINJPKE(C).

GAME G2. Let QUERY be an event that A queries G on r∗. G2 is the same as G1, except that we abort G2

in the QUERY event. In this case, we have∣∣Pr[GA2 ⇒ 1]− Pr[GA1 ⇒ 1]
∣∣ ≤ Pr[QUERY].

Unless QUERY occurs, G(r∗) is a uniformly random value that is independent of A’s view. In this case,
M∗ := Encode(mb,G(r

∗)) does not leak any information about mb by the message-hiding property of the
SOTP, meaning that Pr[GA2 ⇒ 1] = 1/2. By contrast, if QUERY occurs, B (defined in Figure 7) can find
r∗ ∈ Lr such that c∗ := Enc(pk,M∗; r∗), using the algorithm MRec. Indeed, for each query r to G, B
checks whether MRec(pk, r, c∗) ∈ M. In the QUERY event, there exists M∗ := MRec(pk, r∗, c∗) ∈ M
which can be the solution to its challenge ciphertext c∗. It follows that

Pr[QUERY] ≤ AdvOW-CPA
PKE (B),

which concludes the proof.
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Theorem 3.6 (OW-CPA of PKE QROM
=⇒ IND-CPA of ACWC2[PKE, SOTP,G]). Let PKE be a public key

encryption scheme with RR and MR properties. For any quantum adversaryA against the IND-CPA security
of ACWC2[PKE,SOTP,G] with a query depth at most qG, there exists a quantum adversary B against the
OW-CPA security of PKE and adversary C against the injectivity of PKE with with

AdvIND-CPA
ACWC2[PKE,SOTP,G](A) ≤ 2qG

√
AdvOW-CPA

PKE (B) + AdvINJPKE(C),

and the running time of B is about that of A.

Proof. To prove this theorem, we use a sequence of games G0 to G7 defined in Figures 6, 8, and 9, and
Lemma 2.10. Before applying Lemma 2.10, we change G0 to G2. Subsequently, we apply Lemma 2.10 to
G2 and G3. A detailed explanation of the security proof is provided in the following.
GAME G0. G0 (see Figure 6) is the original IND-CPA game with ACWC2[PKE, SOTP,G]. By definition,
we have ∣∣∣∣Pr[GA0 ⇒ 1]− 1

2

∣∣∣∣ = AdvIND-CPA
ACWC2[PKE,SOTP,G](A).

GAME G1. We define G1 by moving part of G0 inside an algorithm CG. In addition, we query u := G(r)
before algorithm CG runs adversary A. As the changes are only conceptual, we have

Pr[GA0 ⇒ 1] = Pr[GA1 ⇒ 1].

GAME G2. We change the way G is defined in G2. Rather than choosing G uniformly, we choose F and
u uniformly and then set G := F(r := u). Here, G = F(r := u) is the same function as F, except that it
returns u on input r. Because the distributions of G and u remain unchanged, we have

Pr[GA1 ⇒ 1] = Pr[GA2 ⇒ 1].

Games G1-G5

1: G← (R → U) // G1

2: r ← R
3: u := G(r) // G1

4: F← (R → U) // G2-G5

5: u← ψU // G2-G5

6: G := F(r := u) // G2-G5

7: w ← CG(r, u) // G1-G2

8: w ← CF(r, u) // G3

9: T ← DF(r, u) // G4-G5

10: return w // G1-G3

11: return r ∈ T // G4-G5

CG(r, u)
1: (pk, sk)← Gen(1λ)
2: (m0,m1)← AG

0 (pk)
3: b← {0, 1} // G1-G4

4: M = Encode(mb, u) // G1-G4

5: M ← ψM // G5

6: c∗ ← Enc(pk,M ; r)
7: b′ ← AG

1 (pk, c
∗)

8: return Jb = b′K
DF(r, u)

1: i← {1, · · · , qG}
2: Run CF(r, u) till i-th query
3: T ← measure F-query
4: return T

Figure 8: GAMES G1-G5 for the proof of Theorem 3.6
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Game G6-G7

1: (pk, sk)← Gen(1λ)
2: r ← ψR
3: M ← ψM
4: c∗ ← Enc(pk,M ; r)
5: T ← E(pk, c∗) // G6

6: M ′ ← B(pk, c∗) // G7

7: return r ∈ T // G6

8: return JM =M ′K // G7

E(pk, c∗)
1: i← {1, · · · , qG}
2: Run until i-th F-query:
3: AF

1(pk)
4: AF

2(pk, c
∗)

5: T ←measure F-query
6: return T

B(pk, c∗)
1: T ← E(pk, c∗)
2: for r ∈ T do
3: if M = MRec(pk, r, c∗) ∈M
4: return M
5: return M ← ψM

Figure 9: GAMES G6-G7 for the proof of Theorem 3.6

GAME G3. We define G3 by providing function F to algorithm C instead of G. By applying Lemma 2.10
with C, S := {r}, and z := (r, u), we obtain the following:∣∣Pr[GA2 ⇒ 1]− Pr[GA3 ⇒ 1]

∣∣ ≤ 2qG
√

Pr[G4 ⇒ 1].

In addition, since the uniformly random value u is only used in the Encode(mb, u), by the message-hiding
property of the SOTP, M is independent of mb. Thus, b = b′ with a probability of 1/2. Therefore,

Pr[GA3 ⇒ 1] =
1

2
.

GAME G4 and G5. We define G4 according to Lemma 2.10. In addition, we define G5 by changing the
way M is calculated. Instead of computing M = Encode(mb, u), we sample M ← ψM. By contrast, in
G4, since u is sampled from ψU and used only for computing Encode(mb, u), the message-hiding property
of SOTP shows that M = Encode(mb, u) follows the distribution ψM. Therefore,

Pr[GA4 ⇒ 1] = Pr[GA5 ⇒ 1].

GAME G6. We define G6 by rearranging G5, as shown in Figure 9. As the changes are only conceptual, we
have

Pr[GA5 ⇒ 1] = Pr[GA6 ⇒ 1].

GAME G7. G7 is defined by Algorithm B, as shown in Figure 9, moving from G6. G7 is the same as G6,
except for the case in which there are two distinct r, r′ ∈ T such that MRec(pk, r, c∗), MRec(pk, r′, c∗) ∈
M. If this occurs, the injectivity of PKE is broken. Thus, we have∣∣Pr[GA6 ⇒ 1]− Pr[GA7 ⇒ 1]

∣∣ ≤ AdvINJPKE(C).

We can observe that in G7, B wins if there exists r ∈ T such that m∗ := MRec(pk, r, c∗) ∈ M, as the
solution of its challenge ciphertext c∗. Therefore, we have

AdvOW-CPA
PKE (B) = Pr[GA7 ⇒ 1].
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Combining all (in)equalities and bounds, we have

AdvIND-CPA
ACWC2[PKE,SOTP,G](A) ≤ 2qG

√
AdvOW-CPA

PKE (B) + AdvINJPKE(C),

which concludes the proof.

Theorem 3.7. If PKE is (weakly) γ-spread, SOTP has the message hiding property, and G is modeled as a
random oracle, PKE′ = ACWC2[PKE,SOTP,G] is (weakly) γ′-spread with

γ′ = γ − log2 (|M| · max
M∈M

ψM(M)),

whereM is the message space of PKE and ψM(M) is the probability that M ∈ M is sampled from the
distribution ψM.

Proof. For a fixed (pk, sk) and m, we consider the probability PrR←R′,G[c = Enc′(pk,m;R)] for any
ciphertext c. Since G is modeled as a random oracle, the probability is taken over the random choice of G.
Given that r is sampled as r ← ψR using the randomness R← R′, the probability can be rewritten as

Pr
R←R′,G

[c = Enc′(pk,m;R)]

= Pr
r←ψR,G

[c = Enc(pk,Encode(m,G(r)); r)].

By the law of total probability on possible r ← ψR, we have:

Pr
r←ψR,G

[c = Enc(pk,Encode(m,G(r)); r)]

=
∑
ri∈R

Pr
G
[c = Enc(pk,Encode(m,G(ri)); ri)] Pr

r←ψR
[r = ri].

Since G(ri) isψU -distributed, the message hiding property of SOTP ensures that the outputM = Encode(m,G(ri))
is ψM-distributed over the random choice of G:∑

ri∈R
Pr
G
[c = Enc(pk,Encode(m,G(ri)); ri)] Pr

r←ψR
[r = ri]

=
∑
ri∈R

Pr
u←ψU

[c = Enc(pk,Encode(m,u); ri)] Pr
r←ψR

[r = ri]

=
∑
ri∈R

Pr
M←ψM

[c = Enc(pk,M ; ri)] Pr
r←ψR

[r = ri].

For the ease of analysis, we define an indicator function I(pk,M, r, c) = Jc == Enc(pk,M ; r)K. Then,∑
ri∈R

Pr
M←ψM

[c = Enc(pk,M ; ri)] Pr
r←ψR

[r = ri]

=
∑
ri∈R

∑
Mj∈M

I(pk,Mj , ri, c) Pr
M←ψM

[M =Mj ] Pr
r←ψR

[r = ri]

=
∑

Mj∈M

∑
ri∈R

I(pk,Mj , ri, c) Pr
r←ψR

[r = ri] Pr
M←ψM

[M =Mj ]

=
∑

Mj∈M
Pr

r←ψR
[c = Enc(pk,Mj ; r)] Pr

M←ψM
[M =Mj ].
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Considering Prr←ψR [c = Enc(pk,Mj ; r)] as the γ-spreadness of PKE on any message Mj , the γ′-
spreadness of PKE′ is upper-bounded as follows:

Pr
R←R′,G

[c = Enc′(pk,m;R)]

=
∑

Mj∈M
Pr

r←ψR
[c = Enc(pk,Mj ; r)] · Pr

M←ψM
[M =Mj ]

≤ |M| · 2−γ · max
M∈M

ψM(M).

By averaging over (pk, sk), the weak γ′-spreadness of PKE′ is also obtained.

4 IND-CCA Secure KEM from ACWC2

4.1 FO Transform with Re-encryption

One can apply the Fujisaki-Okamoto transformation FO⊥KEM to the IND-CPA secure PKE′, as shown in
Figure 5, to obtain an IND-CCA secure KEM. Figure 10 shows the resultant KEM := FO⊥KEM[PKE′,H] =
(Gen,Encap,Decap), where H is a hash function (modeled as a random oracle). Regarding the correctness
error of KEM, KEM preserves the worst-case correctness error of PKE′, as Decap works correctly as long as
Dec′ is performed correctly. Regarding the IND-CCA security of KEM, we can use the previous results [21]
and [15], which are stated in Theorems 4.1 and 4.2, respectively. By combining these results with Theorems
3.5 and 3.6, we can achieve the IND-CCA security of KEM in the classical/quantum random oracle model.
In the case of the quantum random oracle model (QROM), we need to further use the fact that IND-CPA
generically implies OW-CPA.

Encap(pk)

1: m←M
2: (R,K) := H(m)
3: c := Enc′(pk,m;R)

- r ← ψR using the randomness R
- M := Encode(m,G(r))
- c := Enc(pk,M ; r)

4: return (K, c)

Decap(sk, c)

1: m′ := Dec′(sk, c)
- M ′ = Dec(sk, c)
- r′ = RRec(pk,M ′, c)
- m′ = Inv(M ′,G(r′))
- if r′ /∈ R or m′ =⊥, return ⊥
- return m′

2: (R′,K ′) := H(m′)
3: if m′ =⊥ or c ̸= Enc′(pk,m′;R′), return ⊥
4: else, return K ′

Figure 10: KEM = FO⊥KEM[PKE′,H]

Theorem 4.1 (IND-CPA of PKE′
ROM
=⇒ IND-CCA of KEM [21]). Let PKE′ be a public key encryption

scheme with a message spaceM. Let PKE′ has (worst-case) correctness error δ and is (weakly) γ-spread.
For any adversary A making at most qD decapsulation and qH hash queries, against the IND-CCA security
of KEM, there exists an adversary B against the IND-CPA security of PKE′ with

AdvIND-CCA
KEM (A) ≤ 2(AdvIND-CPA

PKE′ (B) + qH
|M|

) + qD2
−γ + qHδ,

where the running time of B is about that of A.
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Theorem 4.2 (OW-CPA of PKE′ QROM
=⇒ IND-CCA of KEM [15]). Let PKE′ have (worst-case) correctness

error δ and be (weakly) γ-spread. For any quantum adversary A, making at most qD decapsulation and qH
(quantum) hash queries against the IND-CCA security of KEM, there exists a quantum adversary B against
the OW-CPA security of PKE′ with

AdvIND-CCA
KEM (A) ≤2q

√
AdvOW-CPA

PKE′ (B) + 24q2
√
δ + 24q

√
qqD · 2−γ/4,

where q := 2(qH + qD) and Time(B) ≈ Time(A) +O(qH · qD · Time(Enc) + q2).

4.2 FO-Equivalent Transform Without Re-encryption

The aforementioned FO⊥KEM requires the Decap algorithm to perform re-encryption to check if ciphertext
c is well-formed. Using m′ as the result of Dec′(sk, c), a new randomness R′ is obtained from H(m′), and
Enc′(pk,m′;R′) is computed and compared with the (decrypted) ciphertext c. Even if m′ is the same as
m used in Encap, it does not guarantee that Enc′(pk,m′;R′) = c without computing R′ and performing
re-encryption. In other words, there could exist many other ciphertexts {ci} (including c as one of them),
all of which are decrypted into the same m′ but generated with distinct randomness {R′}. In FO⊥KEM (and
other FO transformations), there is still no way to find the same c (honestly) generated in Encap other than
by comparing Enc′(pk,m′;R′) and c. In the context of chosen-ciphertext attacks (using the inequality such
as c ̸= Enc′(pk,m′;R′)), it is well known that decapsulation queries using {ci} can leak information on sk,
particularly in lattice-based encryption schemes.

However, we demonstrate that FO⊥KEM based on ACWC2 can eliminate the need for ciphertext compar-
ison c = Enc′(pk,m′;R′) in Decap, and instead replace it with a simpler and more efficient comparison
r′ = r′′. To do this, we first change Decap of Figure 10 into that of Figure 11, which are conceptually identi-
cal to each other. Rather, the change has the effect of preventing reaction attacks that can occur by returning
distinct output errors of Decap. Next, we suggest the new FO⊥KEM conversion based on ACWC2, denoted as
FO
⊥
KEM, as shown in Figure 12. In FO

⊥
KEM, r′ and r′′ are values generated during the execution of Decap,

where r′ is the output of RRec(pk,M ′, c) and r′′ is computed from the randomness R′ of H(m′). The only
change compared to FO⊥KEM in Figure 11 is the boxed area, while the remaining parts remain the same. By
proving that the two conditions r′ /∈ R and c = Enc′(pk,m′;R′) are equivalent to the equality r′ = r′′

(where r′′ ← ψR with the randomness R′), we can show that both FO⊥KEM and FO
⊥
KEM work identically and

thus achieve the same level of IND-CCA security.

Decap(sk, c)

1: M ′ = Dec(sk, c)
2: r′ = RRec(pk,M ′, c)
3: m′ = Inv(M ′,G(r′))
4: (R′,K ′) := H(m′)

5: if m′ =⊥ or r′ /∈ R or c ̸= Enc′(pk,m′;R′)

6: return ⊥
7: else
8: return K ′

Figure 11: Modified KEM = FO⊥KEM[PKE′,H]

Decap(sk, c)

1: M ′ = Dec(sk, c)
2: r′ = RRec(pk,M ′, c)
3: m′ = Inv(M ′,G(r′))
4: (R′,K ′) := H(m′)

5: r′′ ← ψR with the randomness R′

6: if m′ =⊥ or r′ ̸= r′′

7: return ⊥
8: else
9: return K ′

Figure 12: KEM = FO
⊥
KEM[PKE′,H]
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Lemma 4.3. Assume that the output of Dec in PKE always belongs toM, PKE is injective in the injectivity
game of Figure 2, and PKE and SOTP are rigid. Then, r′ ∈ R and c = Enc′(pk, m̃′;R′) in FO⊥KEM holds if
and only if r′ = r′′ in FO

⊥
KEM holds.

Proof. Assume that m′ ̸=⊥, r′ ∈ R, and c = Enc′(pk,m′;R′) holds in the Decap of FO⊥KEM. By the
definition of Enc′, we have c = Enc(pk,Encode(m′,G(r′′)); r′′), where r′′ ← ψR is sampled using the
randomness R′. Furthermore, since M ′ = Dec(sk, c) ∈ M and r′ = RRec(pk,M ′, c) ∈ R, the rigidity
of the PKE leads to the equality c = Enc(pk,M ′; r′). Because PKE is injective, these two equations with
respect to c imply that r′ = r′′.

Conversely, assume that m′ ̸=⊥ and r′ = r′′ holds for a ciphertext c in the Decap of FO
⊥
KEM. By

the rigidity of the SOTP, m′ = Inv(M ′,G(r′)) ̸=⊥ implies M ′ = Encode(m′,G(r′)), thus M ′ =
Encode(m′,G(r′′)). Also, since r′′ ← ψR is sampled using the randomness R′ and r′ = r′′, it follows
that r′ ∈ R. Since M ′ = Dec(sk, c) ∈ M and r′ = RRec(pk,M ′, c) ∈ R, by the rigidity of the PKE,
c = Enc(pk,Dec(sk, c); r′) = Enc(pk,Encode(m′,G(r′′)); r′′) = Enc′(pk,m′;R′) holds.

5 IND-CCA Secure PKE from ACWC2

OW-CPA
PKE

IND-CPA
PKE

IND-CCA
PKE

IND-CCA
PKE

GenNTRU[ψn
1 ] CPA-NTRU+ CCA-NTRU+PKE NTRU+PKE

ACWC2
FO⊥

PKE FO
⊥
PKE

Th. 3.5 (ROM) Th. 5.1 (ROM)

Th. 3.6 (QROM) Th. 5.2 (QROM)
L. 5.3

average-case
correctness error ≈ worst-case

correctness error w/ re-encryption w/o re-encryption

: tight security reduction : non-tight security reduction : tight security equivalence

Figure 13: Overview of security reductions for PKE

5.1 FO Transform with Re-encryption

If the message spaceM′ of an IND-CPA secure PKE′ is sufficiently large, we can apply the another well-
known Fujisaki-Okamoto transformation FO⊥PKE [17] to the IND-CPA secure PKE′ to obtain an IND-CCA
secure PKE′′. For the simplicity’s sake, letM′ = {0, 1}ℓm+ℓr for some integers ℓm and ℓr. The idea behind
the FO⊥PKE is to concatenate an arbitrary message m ∈ {0, 1}ℓm and a random bit-string r ∈ {0, 1}ℓr and
set a new message m̃ := m||r ∈ {0, 1}ℓm+ℓr for the IND-CPA secure PKE′. During the decryption of
PKE′′, the message m is recovered by taking [m̃]ℓm , the most significant bits of length ℓm from m̃. Figure
14 shows the resultant IND-CCA secure PKE′′ := FO⊥PKE[PKE

′,H] = (Gen′′,Enc′′,Dec′′), where H is a
hash function (modeled as a random oracle).

As in the previous KEM, PKE′′ preserves the worst-case correctness error of PKE′, since Dec′′ works
correctly as long as Dec′ is performed correctly. Regarding the IND-CCA security of PKE′′, Figure 13 shows
the overview of security reductions for PKE. Based on the IND-CPA security of PKE′, we prove that PKE′′

is IND-CCA-secure in the random oracle model by adapting and modifying the previous security proof of
[17]. Next, we prove that PKE′′ is also IND-CCA-secure in the quantum random oracle model by using the
adaptive O2H lemma [36] and the extractable RO (random oracle)-simulator [15]. Later, as in FO

⊥
KEM, an
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Enc′′(pk,m ∈ {0, 1}ℓm)

1: r ← {0, 1}ℓr
2: m̃ = m||r ∈ {0, 1}ℓm+ℓr

3: R := H(m̃)
4: c := Enc′(pk, m̃;R)

- r ← ψR using the randomness R
- M := Encode(m̃,G(r))
- c := Enc(pk,M ; r)

5: return c

Dec′′(sk, c)

1: m̃′ = Dec′(sk, c)
- M ′ = Dec(sk, c)
- r′ = RRec(pk,M ′, c)
- m̃′ = Inv(M ′,G(r′))
- if r′ /∈ R or m̃′ =⊥, return ⊥
- return m̃′

2: R′ := H(m̃′)
3: if m̃′ =⊥ or c ̸= Enc′(pk, m̃′;R′)
4: return ⊥
5: else
6: return [m̃′]ℓm

Figure 14: FO⊥PKE[PKE
′,H] = (Gen′′,Enc′′,Dec′′)

analogous transform FO
⊥
PKE for public-key encryption will convert PKE′′ into more efficient PKE scheme

that does not need to do re-encryption during decryption.

5.2 Security Proof in the ROM

Theorem 5.1 (IND-CPA of PKE′ ROM
=⇒ IND-CCA of PKE′′). Let PKE′ be a public-key encryption scheme

with worst-case correctness error δ and weakly γ-spreadness. For any classical adversaryA against the IND-
CCA security of PKE′′, making at most qD queries to the decryption oracle Dec′′ and at most qH queries to
H :M→R, there exists a classical adversary B against the IND-CPA security of PKE′ such that

AdvIND-CCA
PKE′′ (A) ≤ 2 · AdvIND-CPA

PKE′ (B) + (qH + qD) · (2−γ + δ) + qH · 2−ℓr .

Proof. For the security proof, we analyze hybrid gamesG0 toG5, defined in Figures 15 and 16, with a fixed
key pair (pk, sk). To do this, we define δsk := maxm∈M Prr←ψR

[Dec′(sk,Enc′(pk,m; r)) ̸= m] as the
maximum probability of a decryption error and γsk := − logmaxm∈M,c∈C Prr←ψR

[c = Enc′(pk,m; r)] as
the negative logarithm of the maximum probability of any ciphertext for the fixed key pair (pk, sk), ensuring
E[δsk] ≤ δ and E[2−γsk ] ≤ 2−γ , with expectations taken over (pk, sk)← Gen′(1λ). A detailed explanation
of the security proof is provided below.
GAME G0. G0 is the IND-CCA game against PKE′′ with a fixed key pair (pk, sk) (see Figure 15). Here, we
define the advantage of an adversaryA in the IND-CCA game against PKE′′ for a fixed key pair (pk, sk) as:

AdvIND-CCA
PKE′′,sk (A) =

∣∣∣∣Pr[GA0 ⇒ 1]− 1

2

∣∣∣∣ .
GAME G1. G1 is defined by modifying the Dec′′ oracle, as shown in Figure 15. In G1, the Dec′′ ora-
cle is altered to first compute m̃′ = Dec′(sk, c) and return [m̃′]ℓm if there exists (m̃, r̃) ∈ LH such that
Enc′(pk, m̃; r̃) = c and m̃ = m̃′. The Dec′′ oracle in G0 differs from that in G1 if H(m̃) has not been
queried, which occurs with probability ·2−γsk . By the union bound:∣∣Pr[GA0 ⇒ 1]− Pr[GA1 ⇒ 1]

∣∣ ≤ (qH + qD) · 2−γsk .
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GAMES G0-G2

1: (pk, sk)← Gen′′(1λ)

2: (m0,m1)← AH,Dec′′

0 (pk)
3: b← {0, 1}
4: r ← {0, 1}ℓr
5: m̃ = mb||r ∈ {0, 1}n=ℓm+ℓr

6: r̃ = H(m̃)
7: c∗ = Enc′(pk, m̃; r̃)

8: b′ ← AH,Dec′′

1 (pk, c∗)
9: return Jb = b′K

GAME G3

1: (pk, sk)← Gen′′(1λ)

2: (m0,m1)← AH,Dec′′

0 (pk)

3: (r0, r1)← {0, 1}ℓr × {0, 1}ℓr
4: b← {0, 1}
5: m̃b = mb||rb ∈ {0, 1}n=ℓm+ℓr

6: r̃ = H(m̃b)
7: c∗ := Enc′(pk, m̃b; r̃)

8: b′ ← AH,Dec′′

1 (pk, c)
9: return Jb = b′K

H(m̃)

1: if ∃r̃ such that (m̃, r̃) ∈ LH
2: return r̃
3: r̃ ← R
4: LH := LH ∪ {(m̃, r̃)}
5: return r̃

Dec′′(c ̸= c∗) //G0

1: m̃′ = Dec′(sk, c)
2: if m̃′ = ⊥ or
c ̸= Enc′(pk, m̃′;H(m̃′))

3: return ⊥
4: else, return [m̃′]ℓm

Dec′′(c ̸= c∗) //G1-G3

1: m̃′ = Dec′(sk, c)
2: if ∃(m̃, r̃) ∈ LH such that
c = Enc′(pk, m̃; r̃) //G1-G3

and m̃ = m̃′ //G1

3: return [m̃]ℓm
4: else, return ⊥

Figure 15: GAMES G0-G3 for the proof of Theorem 5.1

GAME G2. G2 is defined by modifying the Dec′′ oracle, as shown in Figure 15. In G2, Dec′′ no longer
checks whether m̃ = m̃′, where m̃′ = Dec′(sk, c). Instead, it returns m̃ directly if there exists (m̃, r̃) ∈ LH
such that Enc′(pk, m̃; r̃) = c. Since the Dec′′ oracle in G1 is identical to that of G2 if there are no hash
queries to H that lead to a correctness error, by the union bound, the following holds:∣∣Pr[GA1 ⇒ 1]− Pr[GA2 ⇒ 1]

∣∣ ≤ (qH + qD) · δsk.

Note that the Dec′′ oracle in G2 no longer requires the secret key.
GAME G3. G3 is defined by replacing m̃ by m̃b, as shown in Figure 15. Since this change is only conceptual,
the following holds:

Pr[GA2 ⇒ 1] = Pr[GA3 ⇒ 1].

GAME G4. G4 is defined by moving part of the game into an adversary CH = (CH0 , CH1 ), defined in Figure
16. Since the change is only conceptual, the following holds:

Pr[GA3 ⇒ 1] = Pr[GA4 ⇒ 1].

GAME G5. G5 is defined by changing how r̃∗ is chosen. In G5, instead of generating r̃∗ using H, r̃∗ is
chosen randomly from R, which will not be noticed by A as long as A does not query r̃ to H. Let QUERY
be an event that A queries H on m̃b. Due to the difference lemma [35], the following holds:∣∣Pr[GA4 ⇒ 1]− Pr[GA5 ⇒ 1]

∣∣ ≤ Pr[QUERY].
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GAMES G4-G5

1: (pk, sk)← Gen′′(1λ)
2: (m̃0, m̃1)← CH0 (pk)
3: b← {0, 1}
4: r̃∗ = H(m̃b) //G4

5: r̃∗ ← R //G5

6: c∗ := Enc′(pk, m̃b; r̃
∗)

7: b′ ← CH1 (pk, c∗)
8: return Jb = b′K

H(m̃)

1: if ∃r̃ such that (m̃, r̃) ∈ LH
2: return r̃
3: else, r̃ ← R
4: LH := LH ∪ {(m̃, r̃)}
5: return r̃

Dec′′(c ̸= c∗)

1: if ∃(m̃, r̃) ∈ LH such that
c = Enc′(pk, m̃; r̃)

2: return [m̃]ℓm
3: else, return ⊥

CH0 (pk)

1: (m0,m1)← AH,Dec′′

0 (pk)

2: (r0, r1)← {0, 1}ℓr × {0, 1}ℓr
3: return (m̃0, m̃1) = (m0||r0,m1||r1)

CH1 (pk)

1: b′ ← AH,Dec′′

1 (pk, c∗)
2: return b′

Figure 16: GAMES G4-G5 of Theorem 5.1

Also, since the adversary C in G5 is playing the original IND-CPA game against PKE′, the following holds∣∣∣∣Pr[GA5 ⇒ 1]− 1

2

∣∣∣∣ = AdvIND-CPA
PKE′,sk (C).

Now, construct an adversary DH = (DH0 ,DH1 ) in Figure 17 that solves the IND-CPA game with PKE′

when the event QUERY occurs. Since r1−b is completely hidden from the adversary A, the probability that
A ever queries m̃1−b = (m1−b||r1−b) to H can be bounded to qH · 2−ℓr . Therefore, the following holds:

Pr[QUERY] ≤ AdvIND-CPA
PKE′,sk (D) + qH · 2−lr .

Combining the intermediate results and folding C and D into one single adversary B against IND-CPA
with PKE′, and then taking the expectation over (pk, sk) ← Gen′(1λ) yields the required bound of the
theorem.

DH
0 (pk)

1: LH,Lm̃ := ∅
2: (m̃0, m̃1)← CH0 (pk)
3: return (m̃0, m̃1)

DH
1 (pk, c

∗)

1: CH1 (pk, c∗)
2: if m̃0 ∈ Lm̃, return b′ = 0
3: else, return b′ = 1

H(m̃)

1: if ∃r̃ such that (m̃, r̃) ∈ LH
2: return r̃
3: r̃ ← R
4: LH := LH ∪ {(m̃, r̃)}
5: Lm̃ := Lm̃ ∪ {m̃}
6: return r̃

Figure 17: The adversary D in Theorem 5.1
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5.3 Security Proof in the QROM

Theorem 5.2 (IND-CPA of PKE′
QROM
=⇒ IND-CCA of PKE′′). Let PKE′ be a public-key encryption scheme

with a worst-case correctness error δ that satisfies weak γ-spreadness. For any quantum adversaryA against
the IND-CCA security of PKE′′, making at most qD queries to the decryption oracle Dec′′ and at most qH
queries to H :M→R, there exist a quantum adversary B against the IND-CPA security of PKE′ such that

AdvIND-CCA
PKE′′ (A) ≤ (2qH + 2qD + 1)

√
2AdvIND-CPA

PKE′ (B) + ε+ (qH + qD) · 2−ℓr/2+2

where ε = 128(qH + qD)
2δ + qD · (qH + qD) · 2(−γ+9)/2 + qD · 2−ℓr+1.

The proof strategy for Theorem 5.2 closely follows Theorem 6.1 in [15], with a key distinction in the
application of the O2H lemma. While [15] used Lemma 2.10 (Theorem 3 of [3]) to prove the IND-CCA
security of the KEM, an adaptive version of the O2H lemma, as outlined in Lemma 2.9, is used to prove the
IND-CCA security of PKE′′.

Proof. The security proof begins by analyzing hybrid games with a fixed key pair (pk, sk). To do this,
we define δsk := maxm∈M Prr←ψR

[Dec′(sk,Enc′(pk,m; r)) ̸= m] as the maximum probability of a
decryption error and γsk := − logmaxm∈M,c∈C Prr←ψR

[c = Enc′(pk,m; r)] as the negative logarithm
of the maximum probability of any ciphertext for the fixed key pair (pk, sk), ensuring E[δsk] ≤ δ and
E[2−γsk ] ≤ 2−γ , with expectations taken over (pk, sk)← Gen′(1λ). A detailed explanation of the security
proof is provided below.
GAME G0. G0 is the original IND-CCA game against PKE′′ with the fixed key pair (pk, sk). Here, define
the advantage of adversary A in the IND-CCA game against PKE′′ for a fixed key pair (pk, sk) as:

AdvIND-CCA
PKE′′,sk (A) =

∣∣∣∣Pr[GA0 ⇒ 1]− 1

2

∣∣∣∣ .
GAME G1. G1 is defined by moving parts of the game into a set of algorithms CH = (CH0 , CH1 ), as shown in
Figure 18. Since this change is only conceptual, it holds that:

Pr[GA0 ⇒ 1] = Pr[GA1 ⇒ 1].

GAMES G2 AND G3. G2 and G3 are defined by applying Lemma 2.9 to G1 and CH (see Figure 18). Note
that G2 and G3 generate r̃ ← R instead of r̃ = H(m̃). As a result, it holds that:∣∣Pr[GA1 ⇒ 1]− Pr[GA2 ⇒ 1]

∣∣ ≤ 2 · (qH + qD)
√
Pr[G3 ⇒ 1] + (qH + qD) · 2−ℓr/2+2.

Combining the analyses of G0 to G3, the following inequality holds:

AdvIND-CCA
PKE′,sk (A) =

∣∣∣∣Pr[GA0 ⇒ 1]− 1

2

∣∣∣∣ = ∣∣∣∣Pr[GA1 ⇒ 1]− 1

2

∣∣∣∣
≤

∣∣Pr[GA1 ⇒ 1]− Pr[GA2 ⇒ 1]
∣∣+ ∣∣∣∣Pr[GA2 ⇒ 1]− 1

2

∣∣∣∣
≤ 2 · (qH + qD)

√
Pr[G3 ⇒ 1] + (qH + qD) · 2−ℓr/2+2 +

∣∣∣∣Pr[GA2 ⇒ 1]− 1

2

∣∣∣∣ . (5)
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GAME G0

1: H← (M→R)
2: (pk, sk)← Gen(1λ)

3: (m0,m1)← AH,Dec′′

0 (pk)
4: b← {0, 1}
5: r ← {0, 1}ℓr
6: m̃ = mb||r ∈ {0, 1}n=ℓm+ℓr

7: r̃ = H(m̃)
8: c∗ = Enc′(pk, m̃; r̃)

9: b′ ← AH,Dec′′

1 (pk, c∗)
10: return Jb = b′K

GAMES G1-G3

1: H← (M→R)
2: mb ← CH0 ()
3: r ← {0, 1}ℓr
4: m̃ = mb||r
5: r̃ := H(m̃) //G1

6: r̃ ← R //G2-G3

7: b′ ← CH1 (r, r̃) //G1-G2

8: m̃′ ← DH(r, r̃) //G3

9: return Jb = b′K //G1-G2

10: return Jm̃b = m̃′K //G3

Dec′′(c ̸= c∗)

1: m̃′ = Dec′(sk, c)
2: r̃′ = H(m̃′)
3: if c ̸= Enc′(pk, m̃′; r̃′)
4: return ⊥
5: else, return Jm̃′Kℓm

CH0 ()
1: (pk, sk)← Gen(1λ)

2: (m0,m1)← AH,Dec′′

0 (pk)
3: b← {0, 1}
4: return mb

CH1 (r, r̃)

1: c∗ ← Enc′(pk, m̃; r̃)

2: b′ ← AH,Dec′′

1 (pk, c∗)
3: return b′

DH(r, r̃)

1: i← {1, · · · , qH}
2: Run CH1 (r, r̃) till i-th H-query
3: m̃′ ← measure i-th H-query
4: return m̃′

Figure 18: GAMES G0-G3 for the proof of Theorem 5.2

GAME G2.1. G2.1 is defined by modifying G2, moving parts of the set of algorithms CH = (CH0 , CH1 ) into
the game, as shown in Figure 19. Since this change is only conceptual, it holds that:

Pr[GA2 ⇒ 1] = Pr[GA2.1 ⇒ 1].

GAME G2.2. G2.2 is defined by modifying the generation of m̃, as shown in Figure 19. Since this change is
only conceptual, the following holds:

Pr[GA2.1 ⇒ 1] = Pr[GA2.2 ⇒ 1].

GAME G2.3. G2.3 is defined by moving parts of the game into a set of algorithms EH,Dec′′ = (EH,Dec′′

0 , EH,Dec′′

1 ),
as shown in Figure 19. Since this change is conceptual, it holds that:

Pr[GA2.2 ⇒ 1] = Pr[GA2.3 ⇒ 1].

GAME G2.4. G2.4 is defined by replacing the random oracle H with the extractable RO-simulator S for
the relation Rt := {(x, y) | f(x, y) = t}, where f(x, y) = Enc′(pk, x; y) from Theorem 2.12, as shown
in Figure 19. Furthermore, at the end of the game, the extractor interface S.E is invoked to compute
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GAMES G2.1-G2.2

1: H← (M→R)
2: (pk, sk)← Gen′(1λ)

3: (m0,m1)← AH,Dec′′

0 (pk)

4: (r0, r1)← {0, 1}ℓr × {0, 1}ℓr //G2.2

5: b← {0, 1}
6: r ← {0, 1}ℓr //G2.1

7: m̃ = mb||r //G2.1

8: m̃ = mb||rb //G2.2

9: r̃ ← R
10: c∗ ← Enc′(pk, m̃; r̃)

11: b′ ← AH,Dec′′

1 (pk, c∗)
12: return Jb = b′K

GAMES G2.3-G2.7

1: H← (M→R) //G2.3

2: H = S.RO //G2.4-G2.7

3: (pk, sk)← Gen′(1λ)

4: (m̃0, m̃1)← EH,Dec′′

0 (pk)
5: b← {0, 1}
6: r̃ ← R
7: c∗ ← Enc′(pk, m̃b; r̃)

8: b′ ← EH,Dec′′

1 (pk, c∗)
9: return Jb = b′K

10: while i ∈ I do //G2.4

11: m̂i ← S.E(ci) //G2.4

Dec′′(c ̸= c∗)

1: m̃′ = Dec′(sk, c) //G2.1-G2.6

2: r̃′ = H(m̃′) //G2.1-G2.6

3: if c ̸= Enc′(pk, m̃′; r̃′) //G2.1-G2.5

4: return ⊥ //G2.1-G2.5

5: else, return Jm̃′Kℓm //G2.1-G2.5

6: m̂′ ← S.E(c) //G2.5-G2.7

7: if m̂′ =⊥, return ⊥ //G2.6-G2.7

8: else, return Jm̂′Kℓm //G2.6-G2.7

EH,Dec′′

0 (pk)

1: (m0,m1)← AH,Dec′′

0 (pk)

2: (r0, r1)← {0, 1}ℓr × {0, 1}ℓr
3: return (m̃0, m̃1) = (m0||r0,m1||r1)

EH,Dec′′

1 (pk, c∗)

1: b′ ← AH,Dec′′

1 (pk, c∗)
2: return b′

Figure 19: GAMES G2.1-G2.7 for the proof of Theorem 5.2

m̂i := S.E(ci) for each ci that A queried to Dec′′ during its run. According to the first statement of
Theorem 2.12,

Pr[GA2.3 ⇒ 1] = Pr[GA2.4 ⇒ 1].

Furthermore, applying Theorem 2.13 for R′ := {(m, c) : Dec′(sk, c) ̸= m}, the event

P † := [∀i : m̂i = m̃′i := Dec′(sk, ci) ∨ m̂i = ∅]

holds except with probability ε1,sk := 128(qH + qD)
2ΓR/|R| = 128(qH + qD)

2δsk. Thus,∣∣∣Pr[GA2.4 ⇒ 1]− Pr[GA2.4 ⇒ 1 ∧ P †]
∣∣∣ ≤ ε1sk.

GAME G2.5. G2.5 is defined by moving each query S.E(ci) to the end of the Dec′′(ci) oracle. Since
S.RO(m) and S.E(ci) now form consecutive classical queries, it follows from the contraposition of 4.(b)
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of Theorem 2.12 that, except with probability 2 · 2−ℓr , m̂i = ∅ implies Enc′(pk,mi;S.RO(mi)) ̸= ci.
Applying the union bound, P † implies

P := [∀i : m̂i = mi ∨ (m̂i = ∅ ∧ Enc′(pk,mi;S.RO(mi)) ̸= ci)]

except with probability qD · 2 · 2−ℓr . Furthermore, by 2.(c) of Theorem 2.12, each swap of a S.RO with a
S.E query affects the final probability by at most 8

√
2Γ (f)/|R| = 8

√
2 · 2−γsk . Thus,∣∣∣Pr[GA2.4 ⇒ 1 ∧ P †]− Pr[GA2.5 ⇒ 1 ∧ P ]

∣∣∣ ≤ ε2,sk
with ε2,sk = 2qD · ((qH + qD) · 4

√
2 · 2−γsk + 2−ℓr).

GAME G2.6. InG2.6, the decryption oracle Dec′′ uses m̂′i instead of m̃′i to response to the queries. However,
Dec′′ still queries S.RO(m̃′i), maintaining the interaction pattern between Dec′′ and S.RO as in G2.5.

Note that if the event

Pi := [m̂′i = mi ∨ (m̂i = ∅ ∧ Enc′(pk,mi;S.RO(mi)) ̸= ci)]

holds for a given i, then the above change will not affect the response of Dec′′ and thus will not affect the
probability for Pi+1 to hold as well. Therefore, by mathematical induction, the following holds:

Pr[GA2.5 ⇒ 1 ∧ P ] = Pr[GA2.6 ⇒ 1 ∧ P ].

GAME G2.7. In G2.7, all r̃′ = H(m̃′) queries in Dec′′ are dropped or, equivalently, moved to the very end of
the game execution. Invoking 2.(c) of Theorem 2.12 once again, the following holds:∣∣Pr[GA2.6 ⇒ 1 ∧ P ]− Pr[GA2.7 ⇒ 1 ∧ P ]

∣∣ ≤ ε3,sk.
with ε3,sk = qD · (qD + qH) · 8

√
2 · 2−γsk . Also, note that G2.7 works without knowledge of the secret key

sk and thus constitutes a IND-CPA attacker E against PKE for a fixed key pair (pk, sk). Therefore,∣∣∣∣Pr[GA2.7 ⇒ 1 ∧ P ]− 1

2

∣∣∣∣ ≤ AdvIND-CPA
PKE,sk (E),

where AdvIND-CPA
PKE,sk (E) is the advantage of the adversary E in the IND-CPA game against PKE for a fixed key

pair (pk, sk). Combining the analyses from G2 to G2.7 so far, the following holds:∣∣∣∣Pr[GA2 ⇒ 1]− 1

2

∣∣∣∣ = ∣∣∣∣Pr[GA2.4 ⇒ 1]− 1

2

∣∣∣∣
≤

∣∣∣Pr[GA2.4 ⇒ 1]− Pr[GA2.4 ⇒ 1 ∧ P †]
∣∣∣+ ∣∣∣∣Pr[GA2.4 ⇒ 1 ∧ P ]− 1

2

∣∣∣∣
≤

∣∣∣∣Pr[GA2.4 ⇒ 1 ∧ P †]− 1

2

∣∣∣∣+ ε1,sk

≤
∣∣∣Pr[GA2.4 ⇒ 1 ∧ P †]− Pr[GA2.5 ⇒ 1 ∧ P ]

∣∣∣+ ∣∣∣∣Pr[GA2.5 ⇒ 1 ∧ P ]− 1

2

∣∣∣∣+ ε1,sk

≤
∣∣∣∣Pr[GA2.5 ⇒ 1 ∧ P ]− 1

2

∣∣∣∣+ ε1,sk + ε2,sk
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=

∣∣∣∣Pr[GA2.6 ⇒ 1 ∧ P ]− 1

2

∣∣∣∣+ ε1,sk + ε2,sk

≤
∣∣Pr[GA2.6 ⇒ 1 ∧ P ]− Pr[GA2.7 ⇒ 1 ∧ P ]

∣∣+ ∣∣∣∣Pr[GA2.7 ⇒ 1 ∧ P ]− 1

2

∣∣∣∣+ ε1,sk + ε2,sk

≤
∣∣∣∣Pr[GA2.7 ⇒ 1 ∧ P ]− 1

2

∣∣∣∣+ ε1,sk + ε2,sk + ε3,sk

≤ AdvIND-CPA
PKE,sk (E) + εsk, (6)

where εsk = ε1,sk + ε2,sk + ε3,sk.
GAME G3.1. G3.1 is defined by modifying G3, moving parts of the set of algorithms CH = (CH0 , CH1 ) to the
game and the algorithm FH,Dec′′

1 , as shown in Figure 20. Since this change is only conceptual, the following
holds:

Pr[GA3 ⇒ 1] = Pr[GA3.1 ⇒ 1].

GAME G3.2. G3.2 is defined by modifying the generation of m̃b, as shown in Figure 20. Since this change
is only conceptual, the following holds:

Pr[GA3.1 ⇒ 1] = Pr[GA3.2 ⇒ 1].

GAME G3.3. G3.3 is defined by moving parts of the game into the algorithm FH,Dec′′

0 , as defined in Figure
20. Since this change is only conceptual, the following holds:

Pr[GA3.2 ⇒ 1] = Pr[GA3.3 ⇒ 1].

GAME G3.4. G3.4 is defined by replacing the random oracle H with the extractable RO-simulator S for
the relation Rt := {(x, y) | f(x, y) = t}, where f(x, y) = Enc′(pk, x; y) from Theorem 2.12, as shown
in Figure 20. Furthermore, at the end of the game, the extractor interface S.E is invoked to compute
m̂i := S.E(ci) for each ci that A queried to Dec′′ during its run. According to the first statement of
Theorem 2.12,

Pr[GA3.3 ⇒ 1] = Pr[GA3.4 ⇒ 1].

Furthermore, applying Theorem 2.13 for R′ := {(m, c) : Dec′(sk, c) ̸= m}, the event

P † := [∀i : m̂i = m̃′i := Dec′(sk, ci) ∨ m̂i = ∅]

holds except with probability ε1,sk := 128(qH + qD)
2δsk. Thus,∣∣∣Pr[GA3.4 ⇒ 1]− Pr[GA3.4 ⇒ 1 ∧ P †]

∣∣∣ ≤ ε1,sk.
GAME G3.5. G3.5 is defined by moving each query S.E(ci) to the end of the Dec′′(ci) oracle. Since
S.RO(m) and S.E(ci) now form consecutive classical queries, it follows from the contraposition of 4.(b)
of Theorem 2.12 that, except with probability 2 · 2−ℓr , m̂i = ∅ implies Enc′(pk,mi;S.RO(mi)) ̸= ci.
Applying the union bound, P † implies

P := [∀i : m̂i = mi ∨ (m̂i = ∅ ∧ Enc′(pk,mi;S.RO(mi)) ̸= ci)]
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GAMES G3.1-G3.8

1: H← (M→R) //G3.1-G3.3

2: H = S.RO //G3.4-G3.8

3: (pk, sk)← Gen′(1λ)

4: (m0,m1)← AH,Dec′′

0 (pk) //G3.1-G3.2

5: (r0, r1)← {0, 1}ℓr × {0, 1}ℓr //G3.2

6: (m̃0, m̃1)← FH,Dec′′

0 (pk) //G3.3-G3.8

7: b← {0, 1}
8: rb ← {0, 1}ℓr //G3.1

9: m̃b = mb||rb //G3.1-G3.2

10: r̃ ← R
11: c∗ ← Enc′(pk, m̃b; r̃)

12: m̃′ ← FH,Dec′′

1 (pk, c∗) //G3.1-G3.7

13: b′ ← GH1 (pk, c∗) //G3.8

14: return Jm̃b = m̃′K //G3.1-G3.7

15: return Jb = b′K //G3.8

16: while i ∈ I do //G3.4

17: m̂i ← S.E(ci) //G3.4

Dec′′(c ̸= c∗)

1: m̃′ = Dec′(sk, c) //G3.1-G3.6

2: r̃′ = H(m̃′) //G3.1-G3.6

3: if c ̸= Enc′(pk, m̃′; r̃′) //G3.1-G3.5

4: return ⊥ //G3.1-G3.5

5: else, return Jm̃′Kℓm //G3.1-G3.5

6: m̂′ ← S.E(c) //G3.5-G3.8

7: if m̂′ =⊥, return ⊥ //G3.6-G3.8

8: else, return Jm̂′Kℓm //G3.6-G3.8

FH,Dec′′

0 (pk)

1: (m0,m1)← AH,Dec′′

0 (pk)

2: (r0, r1)← {0, 1}ℓr × {0, 1}ℓr
3: return (m0||r0,m1||r1)

FH,Dec′′

1 (pk, c∗)

1: i← {1, · · · , qH}
2: Run AH,Dec′′

1 (r, r̃) till i-th H-query
3: m̃′ ← measure i-th H-query
4: return m̃′

GH1 (pk, c∗)
1: m̃′ ← FH

1 (pk, c
∗)

2: if m̃0 = m̃′, return 0
3: else if m̃1 = m̃′, return 1
4: else, return b′ ← {0, 1}

Figure 20: GAMES G3.1-G3.8 for the proof of Theorem 5.2

except with probability qD · 2 · 2−ℓr . Furthermore, by 2.(c) of Theorem 2.12, each swap of S.RO with S.E
affects the final probability by at most 8

√
2Γ (f)/|R| = 8

√
2 · 2−γsk . Thus,∣∣∣Pr[GA3.4 ⇒ 1 ∧ P †]− Pr[GA3.5 ⇒ 1 ∧ P ]

∣∣∣ ≤ ε2,sk
with ε2,sk = 2qD · ((qH + qD) · 4

√
2 · 2−γsk + 2−ℓr).

GAME G3.6. In G3.6, the Dec′′ oracle uses m̂′i instead of m̃′i to respond to the queries, but still queries
S.RO(m̃′i), maintaining the interaction pattern from G3.5.

Note that if the event

Pi := [m̂′i = mi ∨ (m̂i = ∅ ∧ Enc′(pk,mi;S.RO(mi)) ̸= ci)]

holds for a given i, then the above change will not affect the response of Dec′′ and thus will not affect the
probability for Pi+1 to hold as well. Thus, by mathematical induction,

Pr[GA3.5 ⇒ 1 ∧ P ] = Pr[GA3.6 ⇒ 1 ∧ P ].
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GAME G3.7. In G3.7, all r̃′ = H(m̃′) queries in Dec′′ are dropped or, equivalently, moved to the very end of
the game execution. Invoking 2.(c) of Theorem 2.12, it holds that:∣∣Pr[GA3.6 ⇒ 1 ∧ P ]− Pr[GA3.7 ⇒ 1 ∧ P ]

∣∣ ≤ ε3,sk,
where ε3,sk = qD · (qD + qH) · 8

√
2 · 2−γsk . Note that G3.7 works without the secret key sk.

GAME G3.8. G3.8 is defined by constructing the adversary G = (F0,G1) from the adversary F = (F0,F1),
as shown in Figure 20. The adversary G is now playing an IND-CPA game with PKE for a fixed key pair
(pk, sk). Similar to the analysis in G2.7, it holds that:∣∣∣∣Pr[GA3.8 ⇒ 1 ∧ P ]− 1

2

∣∣∣∣ = AdvIND-CPA
PKE,sk (G).

Also, since G3.8 ⇒ 1 holds if G3.7 ⇒ 1 hold, the following holds:

Pr[G3.8 ⇒ 1 ∧ P ] = Pr[G3.7 ⇒ 1 ∧ P ] + 1

2
(1− Pr[G3.7 ⇒ 1 ∧ P ])

=
1

2
Pr[G3.7 ⇒ 1 ∧ P ] + 1

2
.

The above equality can be simplified as follows:

Pr[G3.7 ⇒ 1 ∧ P ] = 2Pr[G3.8 ⇒ 1 ∧ P ]− 1 ≤ 2AdvIND-CPA
PKE,sk (G).

Combining the analyses from G3 to G3.8 so far, the following inequality holds:

Pr[GA3 ⇒ 1] = Pr[GA3.1 ⇒ 1] = Pr[GA3.2 ⇒ 1] = Pr[GA3.3 ⇒ 1] = Pr[GA3.4 ⇒ 1]

≤ Pr[GA3.4 ⇒ 1 ∧ P †] + ε1,sk

≤ Pr[GA3.5 ⇒ 1 ∧ P ] + ε2,sk + ε1,sk = Pr[GA3.6 ⇒ 1 ∧ P ] + ε2,sk + ε1,sk

≤ Pr[GA3.7 ⇒ 1 ∧ P ] + ε3,sk + ε2,sk + ε1,sk

= 2AdvIND-CPA
PKE (G) + εsk. (7)

The claimed bound is obtained by combining inequalities (5), (6), and (7) as follows and then taking the
expectation over (pk, sk)← Gen′(1λ):

AdvIND-CPA
PKE′,sk (A) ≤ 2 · (qH + qD)

√
Pr[G3 ⇒ 1] + (qH + qD) · 2−ℓr/2+2 +

∣∣∣∣Pr[GA2 ⇒ 1]− 1

2

∣∣∣∣
≤ 2 · (qH + qD)

√
2AdvIND-CPA

PKE,sk (G) + εsk + (qH + qD) · 2−ℓr/2+2 + AdvIND-CPA
PKE,sk (E) + εsk

≤ (2qH + 2qD + 1)
√

2AdvIND-CPA
PKE,sk (G) + εsk + (qH + qD) · 2−ℓr/2+2.

5.4 FO-Equivalent Transform Without Re-encryption

As in the case of FO
⊥
KEM, we can show that FO⊥PKE based on ACWC2 can be identically converted into more

efficient transform FO
⊥
PKE (shown in Figure 22), where the ciphertext comparison c = Enc′(pk, m̃′;R′) in

Dec′′ is replaced with a simpler comparison of r′ = r′′. To do this, we first change Dec′′ of Figure 14
into that of Figure 21, which are conceptually identical to each other. Next, we show that Dec′′ of Figure
21 works equivalently to that of Figure 22 by proving the Lemma 5.3. As a result, the resulting schemes
FO⊥PKE[PKE

′,H] and FO
⊥
PKE[PKE

′,H] operates identically.
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Dec′′(sk, c)

1: M ′ = Dec(sk, c)
2: r′ = RRec(pk,M ′, c)
3: m̃′ = Inv(M ′,G(r′))
4: R′ := H(m̃′)

5: if m̃′ =⊥ or r′ /∈ R or c ̸= Enc′(pk, m̃′;R′)

6: return ⊥
7: else, return [m̃′]ℓm

Figure 21: Modified PKE′′ = FO⊥PKE[PKE
′,H]

Dec′′(sk, c)

1: M ′ = Dec(sk, c)
2: r′ = RRec(pk,M ′, c)
3: m̃′ = Inv(M ′,G(r′))
4: R′ := H(m̃′)

5: r′′ ← ψR with the randomness R′

6: if m̃′ =⊥ or r′ ̸= r′′

7: return ⊥
8: else, return [m̃′]ℓm

Figure 22: PKE′′ = FO
⊥
PKE[PKE

′,H]

Lemma 5.3. Assume that the output of Dec in PKE always belongs toM, PKE is injective in the injectivity
game of Figure 2, and PKE and SOTP are rigid. Then, r′ ∈ R and c = Enc′(pk, m̃′;R′) in FO⊥PKE holds if
and only if r′ = r′′ in FO

⊥
PKE holds.

Proof. The proof is exactly the same as that of Lemma 4.3, except that m̃ is used instead of m.

6 NTRU+

6.1 GenNTRU[ψn1 ] (=PKE)

Figure 23 defines GenNTRU[ψn1 ] relative to the distribution ψn1 over Rq. Since GenNTRU[ψn1 ] should
be MR and RR for our ACWC2, Figure 23 shows two additional algorithms RRec and MRec. We notice
that RRec(h,m, c) is necessary for performing ACWC2 where r should be recovered from c once m is
obtained. The RR property guarantees that such a randomness-recovery process works well, because for a
ciphertext c = Enc(h,m, r)= hr +m we see that RRec(h,m, c) = (c −m)h−1 = r ∈ R. On the other
hand, MRec(h, r, c) is only used for proving IND-CPA security of the ACWC2-transformed scheme. The
security analysis requires that for a challenge ciphertext c∗ = Enc(h,m∗, r∗)= hr∗ + m∗ the algorithm
MRec(h, r∗, c∗) returns the corresponding message m∗ if a queried r∗ was used for c∗. The MR property
guarantees that once r∗ is given, MRec(h, r∗, c∗) = c∗ − hr∗ = m∗ ∈M.

Gen(1λ)

1: repeat
2: f ′ ← ψn1
3: f = 3f ′ + 1
4: until f is invertible in Rq
5: repeat
6: g← ψn1
7: until g is invertible in Rq
8: h = 3gf−1

9: return (pk, sk) = (h, f)

Enc(h,m← ψn1 ; r← ψn1 )

1: return c = hr+m

Dec(f , c)

1: return m = (cf mod q) mod 3

RRec(h,m, c)

1: return r = (c−m)h−1

MRec(h, r, c)

1: return m = c− hr

Figure 23: GenNTRU[ψn1 ] with average-case correctness error
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6.1.1 Security Proofs

Theorem 6.1 (OW-CPA security of GenNTRU[ψn1 ]). For any adversary A, there exist adversaries B and C
such that

AdvOW-CPA
GenNTRU[ψn

1 ]
(A) ≤ AdvNTRUn,q,ψn

1
(B) + AdvRLWE

n,q,ψn
1
(C).

Proof. We complete our proof through a sequence of games G0 to G1. Let A be the adversary against the
OW-CPA security experiment.
GAME G0. In G0, we have the original OW-CPA game with GenNTRU[ψn1 ]. By the definition of the
advantage function of the adversary A against the OW-CPA game, we have that

AdvOW-CPA
GenNTRU[ψn

1 ]
(A) = Pr[GA0 ⇒ 1].

GAME G1. In G1, the public key h in Gen is replaced by h ← Rq. Therefore, distinguishing G1 from G0

is equivalent to solving the NTRUn,q,ψn
1

problem. More precisely, there exists an adversary B with the same
running time as that of A such that∣∣Pr[GA0 ⇒ 1]− Pr[GA1 ⇒ 1]

∣∣ ≤ AdvNTRUn,q,ψn
1
(B).

Since h ← Rq is now changed to a uniformly random polynomial from Rq, G1 is equivalent to solving an
RLWEn,q,ψn

1
problem. Therefore,

Pr[GA1 ⇒ 1] = AdvRLWE
n,q,ψn

1
(C).

Combining all the probabilities completes the proof.

6.1.2 Average-Case Correctness Error

We analyze the average-case correctness error δ relative to the distribution ψM = ψR = ψn1 using the
template provided in [30]. We can expand cf in the decryption algorithm as follows:

cf = (hr+m)f = (3gf−1r+m)(3f ′ + 1) = 3(gr+mf ′) +m.

For a polynomial p in Rq, let pi be the i-th coefficient of p, and |pi| be the absolute value of pi. Then,
((cf)i mod q) mod 3 = mi if the following inequality holds:∣∣3(gr+mf ′) +m

∣∣
i
≤ q − 1

2
,

where all coefficients of each polynomial are distributed according to ψn1 . Let ϵi be

ϵi = Pr

[∣∣3(gr+mf ′) +m
∣∣
i
≤ q − 1

2

]
.

Then, assuming that each coefficient is independent,

Pr [Dec(sk,Enc(pk,m)) ̸= m] = 1−
n−1∏
i=0

ϵi. (8)

40



±3 ±2 ±1 0

1/128 1/32 23/128 9/16

Table 3: Probability distribution of c = ab+b′(a+a′)

±2 ±1 0

1/64 3/16 19/32

Table 4: Probability distribution of c′ = ab+ a′b′

Because the coefficients of m have a size at most one,

ϵi = Pr

[∣∣3(gr+mf ′) +m
∣∣
i
≤ q − 1

2

]
≥ Pr

[∣∣3(gr+mf ′)
∣∣
i
+ |m|i ≤

q − 1

2

]
≥ Pr

[∣∣3(gr+mf ′)
∣∣
i
+ 1 ≤ q − 1

2

]
= Pr

[∣∣gr+mf ′
∣∣
i
≤ q − 3

6

]
:= ϵ′i.

Therefore,

Pr [Dec(sk,Enc(pk,m)) ̸= m] = 1−
n∏
i=0

ϵi ≤ 1−
n∏
i=0

ϵ′i := δ.

Now, we analyze ϵ′i = Pr
[
|gr+mf ′|i ≤

q−3
6

]
. To achieve this, we need to analyze the distribution of

gr+mf ′. By following the analysis in [30], we can check that for i ∈ [n/2, n], the degree-i coefficient of
gr+mf ′ is the sum of n independent random variables:

c = ba+ b′(a+ a′) ∈ {0,±1,±2,±3}, where a, b, a, b← ψ1. (9)

Additionally, for i ∈ [0, n/2−1], the degree-i coefficient of gr+mf ′ is the sum of n−2i random variables
c (as in Equation (9)), and 2i independent random variables c′ of the form:

c′ = ba+ b′a′ ∈ {0,±1,±2} where a, b, a′, b′ ← ψ1. (10)

Computing the probability distribution of this sum can be done via a convolution (i.e. polynomial multipli-
cation). Define the polynomial:

ρi(X) =


∑3n

j=−3n ρi,jX
j =

(∑3
j=−3 θjX

j
)n

for i = [n/2, n− 1],∑3n−2i
j=−(3n−2i) ρi,jX

j =
(∑3

j=−3 θjX
j
)n−2i(∑2

j=−2 θ
′
jX

j
)2i

for i = [0, n/2− 1],
(11)

where θj = Pr [c = j] (distribution is shown in Table 3) and θ′j = Pr [c′ = j] (distribution is shown in Table
4). Let ρi,j be the probability that the degree-i coefficient of gr+mf ′ is j. Then, ϵ′i can be computed as:

ϵ′i =

{
2 ·

∑3n
j=(q+3)/6 ρi,j for i ∈ [n/2, n− 1] ,

2 ·
∑3n−2i

j=(q+3)/6 ρi,j for i ∈ [0, n/2− 1] ,

where we used the symmetry ρi,j = ρi,−j . Putting ϵ′i into Equation (8), we compute the average-case
correctness error δ of GenNTRU[ψn1 ].
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6.1.3 Spreadness

Lemma 6.2 (Spreadness). GenNTRU[ψn1 ] is n-spread.

Proof. For a fixed message m and ciphertext c, there exists at most one r such that c = Enc(h,m; r).
Suppose there exist r1 and r2 such that c = Enc(h,m; r1) = Enc(h,m; r2). Based on this assumption,
hr1+m = hr2+m holds. By subtracting m and multiplying h−1 on both sides of the equation, we obtain
r = r′. Therefore, there exists at most one r such that c = Enc(h,m; r).

For fixed m, to maximize Pr[Enc(h,m; r) = c], we need to choose c such that c = Enc(h,m; r) for
r = 0. Since there exists only one r such that c = Enc(h,m; r), we have Pr[Enc(h,m; r) = c] = 2−n.
Since this holds for any (pk, sk)← Gen(1λ) and m ∈M, GenNTRU[ψn1 ] is n-spread.

6.1.4 Injectivity and rigidity

The injectivity of GenNTRU[ψn1 ] can be easily shown as follows: if there exists an adversary that can yield
two inputs (m1, r1) and (m2, r2) such that Enc(h,m1; r1) = Enc(h,m2; r2), the equality indicates that
(r1 − r2)h+ (m1 −m2) = 0, where r1 − r2 and m1 −m2 still have small coefficients of length, at most
2
√
n. For a lattice set

L⊥0 := {(v,w) ∈ Rq ×Rq : hv +w = 0 (in Rq)},

(r1−r2,m1−m2) becomes an approximate shortest vector in L⊥0 . Thus, if the injectivity is broken against
GenNTRU[ψn1 ], we can solve the approximate shortest vector problem (SVP) (of length at most 2

√
n) over

L⊥0 . It is well-known [16] that the approximate SVP over L⊥0 is at least as hard as the NTRUn,q,ψn
1

problem
(defined above). Hence, if the NTRUn,q,ψn

1
assumption holds, then the injectivity of GenNTRU[ψn1 ] also

holds.
We can also easily check the rigidity of GenNTRU[ψn1 ] as follows. For any c ∈ C = Rq satisfying the

two conditions m′ = Dec(f , c) ∈ M = {−1, 0, 1}n and r′ = RRec(h,m, c) ∈ R = {−1, 0, 1}n, the
definition of RRec implies r′ = (c −m′)h−1. Equivalently, the equality implies that c = hr′ + m′ =
Enc(h,m′; r′) holds.

6.2 CPA-NTRU+ (=PKE ′)

6.2.1 Instantiation of SOTP

We introduce an instantiation of SOTP = (Encode, Inv), where Encode :M′×U →M and Inv :M×U →
M′, with M′ = {0, 1}n, U = {0, 1}2n, and M = {−1, 0, 1}n, along with distributions ψU = U2n and
ψM = ψn1 as shown in Figure 24, which is used for ACWC2. We note that, following [27], the values of
y + u2 generated by Inv should be checked to determine whether they are 0 or 1.

Encode(x ∈M′, u← U2n)

1: u = (u1, u2) ∈ {0, 1}n × {0, 1}n
2: y = (x⊕ u1)− u2 ∈ {−1, 0, 1}n
3: return y

Inv(y ∈M, u ∈ U2n)

1: u = (u1, u2) ∈ {0, 1}n × {0, 1}n
2: if y + u2 /∈ {0, 1}n, return ⊥
3: x = (y + u2)⊕ u1 ∈ {0, 1}n
4: return x

Figure 24: SOTP instantiation for NTRU+KEM
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Message-Hiding and Rigidity Properties of SOTP. It is easily shown that SOTP is message-hiding
because of the one-time pad property, particularly for part x⊕ u1. That is, unless u1 is known, the message
x ∈M′ is unconditionally hidden from y ∈M. Similarly, x⊕u1 becomes uniformly random over {0, 1}n,
regardless of the message distribution ψM′ , and thus the resulting y follows ψn1 . In addition, we can easily
check that SOTP is perfectly rigid as long as y + u2 ∈ {0, 1}n.

6.2.2 CPA-NTRU+ (=PKE ′)

We obtain CPA-NTRU+ := ACWC2 [GenNTRU[ψn1 ],SOTP, G] by applying ACWC2 from Section 3 to
GenNTRU[ψn1 ]. Because the underlying GenNTRU[ψn1 ] provides injectivity, MR, and RR properties, The-
orems 3.5 and 3.6 provide us with the IND-CPA security of the resulting CPA-NTRU+ in the classical and
quantum random oracle models, respectively. Regarding the correctness error, Theorem 3.2 shows that the
worst-case correctness error of CPA-NTRU+ and the average-case correctness error of GenNTRU[ψn1 ] dif-
fer by the amount of ∆ = ∥ψR∥ · (1 +

√
(ln |M′| − ln∥ψR∥)/2), where ψR andM′ are specified by ψn1

and {0, 1}n, respectively. For instance, when n = 768, we obtain about ∆ = 2−1083.

Gen′(1λ)

1: (pk, sk) := GenNTRU[ψn1 ].Gen(1
λ)

- repeat
- f ′,g← ψn1
- f = 3f ′ + 1

- until f is invertible in Rq
- repeat

- g← ψn1
- until g is invertible in Rq
- (pk, sk) = (h = 3gf−1 mod q, f)

2: return (pk, sk)

Enc′(pk,m ∈ {0, 1}n;R← {0, 1}2n)
1: r← ψn1 using the randomness R
2: m = Encode(m,G(r))
3: c = GenNTRU[ψn1 ].Enc(pk,m; r)

- c = hr+m
4: return c

Dec′(sk, c)

1: m = GenNTRU[ψn1 ].Dec(sk, c)
- m = (cf mod q) mod 3

2: r = RRec(pk, c,m)
- r = (c−m)h−1

3: m = Inv(m,G(r))
4: if m =⊥ or r /∈ {−1, 0, 1}n, return ⊥
5: return m

Figure 25: CPA-NTRU+

Spreadness Properties of CPA-NTRU+. To achieve IND-CCA security of the KEM and PKE via FO
⊥
KEM

and FO
⊥
PKE, we need to show the spreadness of CPA-NTRU+. The spreadness can be easily obtained by

combining Lemma 3.7 with Lemma 6.2.

6.3 NTRU+KEM

Finally, we achieve IND-CCA secure KEM by applying FO
⊥
KEM to CPA-NTRU+. We denote such KEM

by NTRU+KEM := FO
⊥
KEM[CPA-NTRU+,HKEM]. Figure 26 shows the resultant NTRU+KEM, which is

the basis of our implementation in the next section. By combining Theorems 4.1, 4.2, and Lemma 4.3, we
can achieve IND-CCA security of NTRU+KEM. As for the correctness error, NTRU+KEM preserves the
worst-case correctness error of the underlying CPA-NTRU+.
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6.4 NTRU+PKE

Finally, we achieve IND-CCA secure PKE by applying FO
⊥
PKE to CPA-NTRU+. We denote such PKE by

NTRU+PKE := FO
⊥
KEM[CPA-NTRU+,HPKE]. Figure 27 shows the resultant NTRU+PKE, which is the

basis of our implementation in the next section. By combining Theorems 5.1, 5.2, and Lemma 5.3, we can
achieve IND-CCA security of NTRU+PKE. As in NTRU+KEM, NTRU+PKE preserves the worst-case
correctness error of the underlying CPA-NTRU+.

Gen(1λ)

1: repeat
2: f ′,g← ψn1
3: f = 3f ′ + 1
4: until f is invertible in Rq
5: repeat
6: g← ψn1
7: until g is invertible in Rq
8: return (pk, sk) = (h = 3gf−1, f)

Encap(pk)

1: m← {0, 1}n
2: (R,K) = HKEM(m)
3: r← ψn1 using the randomness R
4: m = Encode(m,G(r))
5: c = hr+m
6: return (c,K)

Decap(sk, c)

1: m = (cf mod q) mod 3
2: r = (c−m)h−1

3: m = Inv(m,G(r))
4: (R′,K) = HKEM(m)
5: r′ ← ψn1 using the randomness R′

6: if m =⊥ or r ̸= r′

7: return ⊥
8: else
9: return K

Figure 26: NTRU+KEM

Gen(1λ)

1: repeat
2: f ′,g← ψn1
3: f = 3f ′ + 1
4: until f is invertible in Rq
5: repeat
6: g← ψn1
7: until g is invertible in Rq
8: return (pk, sk) = (h = 3gf−1, f)

Enc(pk,m ∈ {0, 1}ℓm)

1: r ← {0, 1}ℓr
2: m̃ = m||r ∈ {0, 1}n=ℓm+ℓr

3: R = HPKE(m̃)
4: r← ψn1 using the randomness R
5: m = Encode(m̃,G(r))
6: c = hr+m
7: return c

Dec(sk, c)

1: m = (cf mod q) mod 3
2: r = (c−m)h−1

3: m̃ = Inv(m,G(r))
4: R′ = HPKE(m̃)
5: r′ ← ψn1 using the randomness R′

6: if m̃ =⊥ or r ̸= r′

7: return ⊥
8: else
9: return [m̃]ℓm

Figure 27: NTRU+PKE
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7 Algorithm Specification

7.1 Preliminaries and notation

Symmetric primitives. NTRU+{KEM,PKE} use four different hash functions: F, G, HKEM, and HPKE.
We instantiate these functions with SHA256 and SHAKE256 as described in Algorithms 1, 2, 3, and 4. We
also use SHAKE256 as an extendable output function (XOF).

Algorithm 1: F
Require: Byte array m = (m0,m1, · · · ,m3n/2−1)
Ensure: Byte array B = (b0, b1, · · · , b31)

1: (b0, · · · , b31) := SHA256(0x00||m);
2: return (b0, · · · b31)

Algorithm 2: G
Require: Byte array m = (m0,m1, · · · ,mn/8−1)
Ensure: Byte array B = (b0, b1, · · · , bn/8+31)

1: (b0, · · · bn/4−1) := SHAKE256(0x01||m,n/4);
2: return (b0, · · · bn/4−1)

Algorithm 3: HKEM

Require: Byte array m = (m0,m1, · · · ,mn/8−1)
Ensure: Byte array B = (b0, b1, · · · , bn/4+31)

1: (b0, · · · bn/4+31) := SHAKE256(0x02||m,n/4 + 32);
2: return (b0, · · · bn/4+31)

Algorithm 4: HPKE

Require: Byte array m = (m0,m1, · · · ,mn/8−1)
Ensure: Byte array B = (b0, b1, · · · , bn/8+31)

1: (b0, · · · , bn/4−1) := SHAKE256(0x03||m,n/4);
2: return (b0, · · · bn/4−1)

Sampling from a Binomial distribution. NTRU+{KEM,PKE} use a centered binomial distribution with
η = 1 for sampling the coefficients of polynomials, as defined in Algorithm 5. Additionally, we introduce
the BytesToBits function in Algorithm 6, which determines the order of sampled coefficients. BytesToBits
plays a crucial role in the efficient implementation of CBD1 and SOTP using AVX2 instructions. We also
define BitsToBytes as the inverse function of BytesToBits.

Algorithm 5: CBD1 : Bn/4 → Rq

Require: Byte array B = (b0, b1, · · · , bn/4−1)
Ensure: Polynomial f ∈ Rq

1: (β0, · · · , βn−1) := BytesToBits((b0, · · · , bn/8−1))
2: (βn, · · · , β2n−1) := BytesToBits((bn/8, · · · , bn/4−1))
3: for i from 0 to n− 1 do
4: fi := βi − βi+n
5: return f = f0 + f1x+ f2x

2 + · · ·+ fn−1x
n−1
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Algorithm 6: BytesToBits
Require: Byte array B = (b0, b1, · · · , bn/8−1) ∈ Bn/8
Ensure: Bit array f = (f0, · · · , fn−1) ∈ {0, 1}n

1: s = ⌊n/256⌋
2: r = n− 256s
3: (r0, r1, r2, r4, r5, r6, r7) := bit-decompose(r) // r = r02

0 + · · · r727
4: for i from 0 to s− 1 do
5: for j from 0 to 7 do
6: t = b32i+4j+3|b32i+4j+2|b32i+4j+1|b32i+4j

7: for k from 0 to 1 do
8: for l from 0 to 15 do
9: f256i+16l+2j+k = t&1;

10: t = t >> 1;
11: c1 = 256s, c2 = 32s
12: if r7 = 1
13: for j from 0 to 3 do
14: t = bc2+4j+3|bc2+4j+2|bc2+4j+1|bc2+4j

15: for k from 0 to 1 do
16: for l from 0 to 16 do
17: fc1+8l+2j+k = t&1;
18: t = t >> 1;
19: c1 = c1 + 128r7, c2 = c2 + 16r7
20: if r6 = 1
21: for j from 0 to 1 do
22: t = bc2+4j+3|bc2+4j+2|bc2+4j+1|bc2+4j

23: for k from 0 to 1 do
24: for l from 0 to 15 do
25: fc1+4l+2j+k = t&1;
26: t = t >> 1;
27: c1 = c1 + 64r6, c2 = c2 + 8r6
28: if r5 = 1
29: t = bc2+3|bc2+2|bc2+1|bc2
30: for k from 0 to 1 do
31: for l from 0 to 15 do
32: fc1+2l+k = t&1;
33: t = t >> 1;
34: return f = (f0, · · · , fn−1)

Semi-generalized one time pad The Encode function of SOTP = (Encode, Inv) is nearly identical to
CBD1, differing only in that it applies an exclusive OR operation to the first half of the random bytes and
the message before sampling from the centered binomial distribution. Consequently, Encode, as defined
in Algorithm 7, also utilizes the BytesToBits function, just like CBD1. Additionally, we introduce the Inv
function in Algorithm 8, which serves as the inverse of the Encode function and utilizes the BitsToBytes
function for byte recovery.
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Algorithm 7: Encode
Require: Message Byte array m = (m0,m1, · · · ,m31)
Require: Byte array B = (b0, b1, · · · , bn/4−1)
Ensure: Polynomial f ∈ Rq

1: (β0, · · · , βn−1) := BytesToBits((b0, · · · , bn/8−1))
2: (βn, · · · , β2n−1) := BytesToBits((bn/8, · · · , bn/4−1))
3: (m0, · · · ,mn−1) := BytesToBits(m)
4: for i from 0 to n− 1 do
5: fi := (mi ⊕ βi)− βi+n
6: return f = f0 + f1x+ f2x

2 + · · ·+ fn−1x
n−1

Algorithm 8: Inv
Require: Polynomial f ∈ Rq
Require: Byte array B = (b0, b1, · · · , bn/4−1)
Ensure: Message Byte array m = (m0,m1, · · · ,m31)

1: (β0, · · · , βn−1) := BytesToBits((b0, · · · , bn/8−1))
2: (βn, · · · , β2n−1) := BytesToBits((bn/8, · · · , bn/4−1))
3: for i from 0 to n− 1 do
4: if fi + βi+n /∈ {0, 1}, return ⊥ // Refer to line 8 in Algorithm 17
5: mi := ((fi + βi+n)&1)⊕ βi
m = BitsToBytes((m0, · · · ,mn−1))

6: return m

Encoding and Decoding. We introduce the Encodem function in Algorithm 9 to encode a byte array with
a length equal or less than ℓm − 1 to a byte array with length ℓm. Additionally, the Decodem function,
defined in Algorithm 10, serves as the inverse of Encodem.

Algorithm 9: Encodem
Require: Byte array B = (b0, · · · , bℓ−1) ∈ Bℓ
Ensure: Byte array B′ = (b0, · · · , bℓm−1) ∈ Bℓm

1: if ℓm − 1 < ℓ, return ⊥
2: return B′ = (b0, · · · , bℓ−1︸ ︷︷ ︸

ℓ bytes

, 0xff, 0, · · · , 0︸ ︷︷ ︸
ℓm−ℓ−1 bytes

)

Algorithm 10: Decodem
Require: Byte array B = (b0, · · · , bℓm−1) ∈ Bℓm
Ensure: Byte array B′ = (b′0, · · · , b′ℓ−1) ∈ Bℓ

1: for i = ℓm − 1; i ≥ 0; i-- do
2: if bi = 0, continue;
3: else if bi = 0xff, ℓ = i break;
4: else, return ⊥
5: if i = −1, return ⊥
6: return B′ = (b′0, · · · , b′ℓ−1) = (b0, · · · , bℓ−1)
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To encode polynomials in Rq into a 3n/2 byte array, we introduce the Encodeq function in Algorithms
11 and 12. This function assumes each coefficient of the polynomial belongs to {0, . . . , q− 1} and is stored
as a 16-bit datum. Additionally, we define the Decodeq function in Algorithms 13 and 14 as the inverse of
Encodeq. maxj in Algorithm 11 and 13 is defined as maxj = 8 for NTRU+{KEM,PKE}576, maxj = 11
for NTRU+{KEM,PKE}768, and maxj = 17 for NTRU+{KEM,PKE}1152.

Algorithm 11: Encodeq
for NTRU+{KEM,PKE}576, NTRU+{KEM,PKE}768, and NTRU+{KEM,PKE}1152

Require: Polynomial f ∈ Rq
Ensure: Byte array B = (b0, · · · , b3n/2−1)

1: for i from 0 to 15 do
2: for j from 0 to maxj do
3: for k from 0 to 3 do
4: tk = f64j+i+16k

5: b96j+2i = t0
6: b96j+2i+1 = (t0 >> 8) + (t1 << 4)
7: b96j+2i+32 = t1 >> 4
8: b96j+2i+33 = t2
9: b96j+2i+64 = (t2 >> 8) + (t3 << 4)

10: b96j+2i+65 = t3 >> 4
11: return (b0, · · · , b3n/2−1)

Algorithm 12: Encodeq for NTRU+{KEM,PKE}864
Require: Polynomial f ∈ Rq
Ensure: Byte array B = (b0, · · · , b3n/2−1)

1: for i from 0 to 15 do
2: for j from 0 to 12 do
3: for k from 0 to 3 do
4: tk = f64j+i+16k

5: b96j+2i = t0
6: b96j+2i+1 = (t0 >> 8) + (t1 << 4)
7: b96j+2i+32 = t1 >> 4
8: b96j+2i+33 = t2
9: b96j+2i+64 = (t2 >> 8) + (t3 << 4)

10: b96j+2i+65 = t3 >> 4
11: for i from 0 to 7 do
12: for k from 0 to 3 do
13: tk = f832+i+8k

14: b1248+2i = t0
15: b1248+2i+1 = (t0 >> 8) + (t1 << 4)
16: b1248+2i+16 = t1 >> 4
17: b1248+2i+17 = t2
18: b1248+2i+32 = (t2 >> 8) + (t3 << 4)
19: b1248+2i+33 = t3 >> 4
20: return (b0, · · · , b3n/2−1)
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Algorithm 13: Decodeq
for NTRU+{KEM,PKE}576, NTRU+{KEM,PKE}768, and NTRU+{KEM,PKE}1152

Require: Byte array B = (b0, · · · , b3n/2−1)
Ensure: Polynomial f ∈ Rq

1: for i from 0 to 15 do
2: for j from 0 to maxj do
3: t0 = b96j+2i

4: t1 = b96j+2i+1

5: t2 = b96j+2i+32

6: t3 = b96j+2i+33

7: t4 = b96j+2i+64

8: t5 = b96j+2i+65

9: f64j+i = t0|(t1&0xf) << 8
10: f64j+i+16 = t1 >> 4|t2 << 4
11: f64j+i+32 = t3|(t4&0xf) << 8
12: f64j+i+48 = t4 >> 4|t5 << 4
13: return f = (f0, · · · , fn−1)

Algorithm 14: Decodeq for NTRU+{KEM,PKE}864
Require: Byte array B = (b0, · · · , b3n/2−1)
Ensure: Polynomial f ∈ Rq

1: for i from 0 to 15 do
2: for j from 0 to 12 do
3: t0 = b96j+2i

4: t1 = b96j+2i+1

5: t2 = b96j+2i+32

6: t3 = b96j+2i+33

7: t4 = b96j+2i+64

8: t5 = b96j+2i+65

9: f64j+i = t0|(t1&0xf) << 8
10: f64j+i+16 = t1 >> 4|t2 << 4
11: f64j+i+32 = t3|(t4&0xf) << 8
12: f64j+i+48 = t4 >> 4|t5 << 4
13: for i from 0 to 15 do
14: t0 = b1248+2i

15: t1 = b1248+2i+1

16: t2 = b1248+2i+16

17: t3 = b1248+2i+17

18: t4 = b1248+2i+32

19: t5 = b1248+2i+33

20: f832+i = t0|(t1&0xf) << 8
21: f832+i+8 = t1 >> 4|t2 << 4
22: f832+i+16 = t3|(t4&0xf) << 8
23: f832+i+24 = t4 >> 4|t5 << 4
24: return f = (f0, · · · , fn−1)

49



• NTRU+{KEM,PKE}576
index[144] = {1, 217, 109, 325, 55, 271, 163, 379, 19, 235, 127, 343, 73, 289,
181, 397, 37, 253, 145, 361, 91, 307, 199, 415, 7, 223, 115, 331, 61, 277, 169,
385, 25, 241, 133, 349, 79, 295, 187, 403, 43, 259, 151, 367, 97, 313, 205, 421,
13, 229, 121, 337, 67, 283, 175, 391, 31, 247, 139, 355, 85, 301, 193, 409, 49,
265, 157, 373, 103, 319, 211, 427, 5, 221, 113, 329, 59, 275, 167, 383, 23, 239,
131, 347, 77, 293, 185, 401, 41, 257, 149, 365, 95, 311, 203, 419, 11, 227, 119,
335, 65, 281, 173, 389, 29, 245, 137, 353, 83, 299, 191, 407, 47, 263, 155, 371,
101, 317, 209, 425, 17, 233, 125, 341, 71, 287, 179, 395, 35, 251, 143, 359, 89,
305, 197, 413, 53, 269, 161, 377, 107, 323, 215, 431};

• NTRU+{KEM,PKE}768
index[192] = {1, 289, 145, 433, 73, 361, 217, 505, 37, 325, 181, 469, 109, 397,
253, 541, 19, 307, 163, 451, 91, 379, 235, 523, 55, 343, 199, 487, 127, 415, 271,
559, 7, 295, 151, 439, 79, 367, 223, 511, 43, 331, 187, 475, 115, 403, 259, 547,
25, 313, 169, 457, 97, 385, 241, 529, 61, 349, 205, 493, 133, 421, 277, 565, 13,
301, 157, 445, 85, 373, 229, 517, 49, 337, 193, 481, 121, 409, 265, 553, 31, 319,
175, 463, 103, 391, 247, 535, 67, 355, 211, 499, 139, 427, 283, 571, 5, 293, 149,
437, 77, 365, 221, 509, 41, 329, 185, 473, 113, 401, 257, 545, 23, 311, 167, 455,
95, 383, 239, 527, 59, 347, 203, 491, 131, 419, 275, 563, 11, 299, 155, 443, 83,
371, 227, 515, 47, 335, 191, 479, 119, 407, 263, 551, 29, 317, 173, 461, 101,
389, 245, 533, 65, 353, 209, 497, 137, 425, 281, 569, 17, 305, 161, 449, 89, 377,
233, 521, 53, 341, 197, 485, 125, 413, 269, 557, 35, 323, 179, 467, 107, 395,
251, 539, 71, 359, 215, 503, 143, 431, 287, 575};

• NTRU+{KEM,PKE}864 and NTRU+{KEM,PKE}1152
index[288] = {1, 433, 217, 649, 109, 541, 325, 757, 55, 487, 271, 703, 163, 595,
379, 811, 19, 451, 235, 667, 127, 559, 343, 775, 73, 505, 289, 721, 181, 613,
397, 829, 37, 469, 253, 685, 145, 577, 361, 793, 91, 523, 307, 739, 199, 631,
415, 847, 7, 439, 223, 655, 115, 547, 331, 763, 61, 493, 277, 709, 169, 601, 385,
817, 25, 457, 241, 673, 133, 565, 349, 781, 79, 511, 295, 727, 187, 619, 403,
835, 43, 475, 259, 691, 151, 583, 367, 799, 97, 529, 313, 745, 205, 637, 421,
853, 13, 445, 229, 661, 121, 553, 337, 769, 67, 499, 283, 715, 175, 607, 391,
823, 31, 463, 247, 679, 139, 571, 355, 787, 85, 517, 301, 733, 193, 625, 409,
841, 49, 481, 265, 697, 157, 589, 373, 805, 103, 535, 319, 751, 211, 643, 427,
859, 5, 437, 221, 653, 113, 545, 329, 761, 59, 491, 275, 707, 167, 599, 383, 815,
23, 455, 239, 671, 131, 563, 347, 779, 77, 509, 293, 725, 185, 617, 401, 833,
41, 473, 257, 689, 149, 581, 365, 797, 95, 527, 311, 743, 203, 635, 419, 851,
11, 443, 227, 659, 119, 551, 335, 767, 65, 497, 281, 713, 173, 605, 389, 821,
29, 461, 245, 677, 137, 569, 353, 785, 83, 515, 299, 731, 191, 623, 407, 839,
47, 479, 263, 695, 155, 587, 371, 803, 101, 533, 317, 749, 209, 641, 425, 857,
17, 449, 233, 665, 125, 557, 341, 773, 71, 503, 287, 719, 179, 611, 395, 827,
35, 467, 251, 683, 143, 575, 359, 791, 89, 521, 305, 737, 197, 629, 413, 845, 53,
485, 269, 701, 161, 593, 377, 809, 107, 539, 323, 755, 215, 647, 431, 863};

Figure 28: Index for the NTT
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n q
Radix-2 for

cyclotomic trinomial
Radix-3 Radix-2 d ζ ℓ = 3n/d

576 3457 1 2 4 4 81 432
768 3457 1 1 5 4 22 576
864 3457 1 2 4 3 9 864
1152 3457 1 2 5 4 9 864

ζ : primitive ℓ-th root of unity modulo q

Table 5: Combinations of NTT layers

Polynomial rings and Number Theoretic Transform. We define two quotient rings: R = Z[x]/⟨xn −
xn/2 + 1⟩ and Rq = Zq[x]/⟨xn − xn/2 + 1⟩, where n = 2a3b with a, b ∈ N ∪ {0} such that xn − xn/2 + 1
is the 3n-th cyclotomic polynomial. To efficiently perform computations within the ring Rq, we reduce
the computations to the product of smaller rings, denoted as

∏n/d−1
i=0 Zq[x]/⟨xd − ζi⟩, using the Number

Theoretic Transform (NTT). To implement NTT efficiently, we combine three different NTT layers in the
following sequence: Radix-2 NTT layer for the cyclotomic trinomial, Radix-3 NTT layer, and then Radix-
2 NTT layer. We choose to use Radix-3 NTT layers before Radix-2 NTT layers to minimize the size
of pre-computation table. The initial Radix-2 NTT layer for the cyclotomic trinomial, as introduced by
[30], establishes a ring isomorphism from Zq[x]/⟨xn − xn/2 + 1⟩ to the product ring Zq[x]/⟨xn/2 − ζ⟩ ×
Zq[x]/⟨xn/2 − ζ5⟩, where ζ denotes a primitive sixth root of unity modulo q. Subsequently, we use Radix-
3 NTT layers to establish isomorphisms from Zq[x]/⟨xn − α3⟩ to the product ring Zq[x]/⟨xn/3 − α⟩ ×
Zq[x]/⟨xn/3−αω⟩×Zq[x]/⟨xn/3−αω2⟩, where ω denotes a primitive third root of unity modulo q. In the
final step, we use Radix-2 NTT layers to establish isomorphisms from Zq[x]/⟨xn − ζ2⟩ to the product ring
Zq[x]/⟨xn/2−ζ⟩×Zq[x]/⟨xn/2+ζ⟩. Table 5 presents comprehensive information, including the number of
applied NTT layers and the resulting degree d of component rings in the product rings for various parameter
sets. Note that, for the successful implementation of NTT, it requires a primitive ℓ-th root of unity ζ modulo
q, where ℓ = 3n/d. The values of ℓ and ζ for each parameter are also included in Table 5.

Considering efficient implementation of the NTT, we assume the use of an in-place implementation that
does not require reordering of the output values. For clarity, we define NTT as follows:

f̂ = NTT(f) = (f mod xd − ζindex[0], · · · , f mod xd − ζindex[n/d−1])

= (
d−1∑
i=0

f̂ix
i,
d−1∑
i=0

f̂3+ix
i, · · · ,

d−1∑
i=0

f̂n−d+ix
i) = (f̂0, f̂1, · · · , f̂n−1)

where the array index is defined in Figure 28. In this document, we denote NTT as the number theoretic
transform function and NTT−1 as the inverse number theoretic transform function.

Multiplication in the NTT domain. After transforming polynomials in Rq into elements of the product
rings, multiplication is performed within each component ring Zq[x]/⟨xd− ζi⟩. Let a(x) =

∑d−1
j=0 ajx

j and
b(x) =

∑d−1
j=0 bjx

j be polynomials in Zq[x]/⟨xd − ζi⟩.
For d = 2, the product a(x)b(x) is computed as follows:

a(x)b(x) = (a0b0 + a1b1ζi) + (a0b1 + a1b0)x,
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which can be represented in matrix form as:

c(x) =

[
c0
c1

]
=

[
a0 a1ζi
a1 a0

] [
b0
b1

]
.

For d = 3, the product a(x)b(x) becomes:

a(x)b(x) = (a0b0 + (a2b1 + a1b2)ζi) + (a1b0 + a0b1 + a2b2ζi)x+ (a2b0 + a1b1 + a0b2)x
2.

In matrix form, this is equivalent to:

c(x) =

c0c1
c2

 =

a0 a2ζi a1ζi
a1 a0 a2ζi
a2 a1 a0

b0b1
b2

 .
For d = 4, the product a(x)b(x) is:

c(x) = a(x)b(x) =(a0b0 + (a1b3 + a2b2 + a3b1)ζi) + (a0b1 + a1b0 + (a2b3 + a3b2)ζi)x

+ (a0b2 + a1b1 + a2b0 + a3b3ζi)x
2 + (a0b3 + a1b2 + a2b1 + a3b0)x

3

The corresponding matrix form is:

c(x) =


c0
c1
c2
c3

 =


a0 a3ζi a2ζi a1ζi
a1 a0 a3ζi a2ζi
a2 a1 a0 a3ζi
a3 a2 a1 a0



b0
b1
b2
b3

 .
Inversion in the NTT domain. In the NTT domain, inversion is performed within each component
ring Zq[x]/⟨xd − ζi⟩, similar to multiplication. To find the inverse b(x) =

∑d−1
j=0 bjx

j of a polynomial
a(x) =

∑d−1
j=0 ajx

j ∈ Zq[x]/⟨xd − ζi⟩, we use matrix representations.
For d = 2, the inverse b(x) is computed as:[

b0
b1

]
=

[
a0 a1ζi
a1 a0

]−1 [
1
0

]
=

1

a20 − a21ζi

[
a0 −a1ζi
−a1 a0

] [
1
0

]
=

1

a20 − a21ζi

[
a0
−a1

]
.

For d = 3, the inverse b(x) is:b0b1
b2

 =

a0 a2ζ a1ζ
a1 a0 a2ζ
a2 a1 a0

−1 10
0

 = d−1

a′0a′1
a′2

 ,
where

a′0 = a20 − ζia1a2, a′1 = ζia
2
2 − a0a1, a′2 = a21 − a0a2

and

d = a0(a
2
0 − ζia1a2) + ζia1(a

2
1 − a0a2) + ζia2(ζia

2
2 − a0a1) = a0a

′
0 + ζi(a1a

′
2 + a2a

′
1).
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For d = 4, finding the inverse of a(x) through matrix inversion is more complex. Instead, we follow the
method in [38], reducing the problem of inversion in the ring Zq[x]/⟨x4−ζi⟩ to inversion in Zq[z]/⟨z2 − ζi⟩,
where z = x2. Thus, a(x) ∈ Zq[y]/⟨x4 − ζi⟩ is rewritten as:

a(x) = â0(z) + â1(z)x, where â0(z) = a0 + a2z, â1(z) = a1 + a3z.

The product of a(x) = â0(z) + â1(z)x and b(x) = b̂0(z) + b̂1(z)x is:

c(x) = a(x)b(x) = (â0(z) + â1(z)x) · (b̂0(z) + b̂1(z)x)

= â0(z)b̂0(z) + (â0(z)b̂1(z) + â1(z)b̂0(z))x+ â1(z)b̂1(z)x
2

= (â0(z)b̂0(z) + â1(z)b̂1(z)z) + (â0(z)b̂1(z) + â1(z)b̂0(z))x,

which can be expressed in matrix form as:

c(x) =

[
ĉ0
ĉ1

]
=

[
â0(z) â1(z)z
â1(z) â0(z)

] [
b0(z)
b1(z)

]
.

To find the inverse b(x) = b̂0(z) + b̂1(z)x, we use:[
â0(z)
â1(z)

]
=

[
â0(z) â1(z)z
â1(z) â0(z)

]−1 [
1
0

]
=

1

â20(z)− â21(z)z

[
â0(z) −â1(z)z
−â1(z) â0(z)

] [
1
0

]
=

1

a20(z)− a21(z)z

[
a0(z)
−a1(z)

]
∈ Zq[z]/⟨z2 − ζi⟩

1×2
.

The inverse of â20(z)−â21(z)z ∈ Zq[z]/⟨z2 − ζi⟩ can be computed using the case of d = 2. After performing
the necessary operations in Zq[z]/⟨z2 − ζi⟩, the final result is obtained by substituting z = x2.

In all cases, we need to compute the multiplicative inverse modulo q. To mitigate the risk of side-channel
attacks, we opt for Fermat’s Little Theorem rather than the extended Euclidean algorithm. Fermat’s Little
Theorem states that if a is coprime with q, then aq−1 ≡ 1 (mod q). Using this theorem, we can compute
the inverse of a by calculating aq−2 mod q.
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7.2 Specification of NTRU+

7.2.1 NTRU+KEM

We describe our NTRU+KEM. Unlike NTRU+KEM in section 6.3, we apply a slightly tweaked FO
⊥
KEM

to resist the multi-target attacks. Algorithms 15, 16, and 17 define the key generation, encapsulation, and
decapsulation of NTRU+KEM. Note that, in the key generation algorithm, we multiply ĥ and ĥ−1 by 216

to account for the Montgomery reduction.

Algorithm 15: Gen(1λ): key generation

Ensure: Public key pk ∈ B⌈log2 q⌉·n/8
Ensure: Secret key sk ∈ B⌈log2 q⌉·n/4

1: repeat
2: d← B32
3: f := XOF(d, n/4)
4: f ′ := CBD1(f)
5: f := 3f ′ + 1
6: f̂ := NTT(f)
7: until f is invertible in Rq
8: repeat
9: d← B32

10: g := XOF(d, n/4)
11: g′ := CBD1(g)
12: g := 3g′

13: ĝ := NTT(g)
14: until g is invertible in Rq
15: ĥ := ĝ ◦ f̂−1
16: pk := Encodeq(2

16 · ĥ)
17: sk := Encodeq(f̂)||Encodeq(216 · ĥ

−1
)||F(pk)

18: return (pk, sk)

Algorithm 16: Encap(pk): encapsulation

Require: Public key pk ∈ B⌈log2 q⌉·n/8
Ensure: Ciphertext c ∈ B⌈log2 q⌉·n/8

1: m← Bn/8
2: (K, r) := H(m,F(pk))
3: r := CBD1(r)
4: r̂ = NTT(r)
5: m = Encode(m,G(Encodeq(r̂)))
6: m̂ = NTT(m)
7: 216 · ĥ := Decodeq(pk)

8: ĉ = ĥ ◦ r̂+ m̂
9: c := Encodeq(ĉ)

10: return (c,K)
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Algorithm 17: Decap(sk, c): decapsulation

Require: Secret key sk ∈ B⌈log2 q⌉·n/4+32

Require: Ciphertext c ∈ B⌈log2 q⌉·n/8
Ensure: Shared key m ∈ B32

1: Parse sk = (sk1, sk2, sk3) ∈ B⌈log2 q⌉·n/8 × B⌈log2 q⌉·n/8 × B32
2: f̂ = Decodeq(sk1)
3: ĉ = Decodeq(c)

4: m = NTT−1(ĉ ◦ f̂) mod ±3
5: m̂ = NTT(m)

6: 216 · ĥ−1 = Decodeq(sk2)

7: r̂ = (ĉ− m̂) ◦ ĥ−1 // RRec
8: m′ := Inv(m,G(Encodeq(r̂))) // Checking if m′ =⊥ is done in line 12
9: (K ′, r′) := H(m′, sk3)

10: r′ := CBD1(r
′)

11: r̂′ = NTT(r′)
12: if m′ =⊥ or r̂ ̸= r̂′, return ⊥ // Check if m′ =⊥ or r′ /∈ Rq
13: else, return K ′

7.2.2 NTRU+ PKE

Finally, we specify our NTRU+PKE for the KpqC competition. As in NTRU+KEM, we apply a slightly
tweaked FO

⊥
PKE in order to resist the multi-target attacks. Algorithms 18, 19, and 20 define the key genera-

tion, encryption, and decryption of NTRU+PKE, respectively.

Algorithm 18: Gen(1λ): key generation

Ensure: Public key pk ∈ B⌈log2 q⌉·n/8
Ensure: Secret key sk ∈ B⌈log2 q⌉·n/4

1: d← B32
2: (f, g) := XOF(d, n/2)
3: f ′ := CBD1(f)
4: g′ := CBD1(g)
5: f = 3f ′ + 1
6: g = 3g′

7: f̂ = NTT(f)
8: ĝ = NTT(g)
9: if f or g is not invertible in Rq, restart

10: ĥ = ĝ ◦ f̂−1
11: pk := Encodeq(2

16 · ĥ)
12: sk := Encodeq(f̂)||Encodeq(216 · ĥ

−1
)||F(pk)

13: return (pk, sk)
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Algorithm 19: Enc(pk,m): encryption

Require: Public key pk ∈ B⌈log2 q⌉·n/8
Require: Message m ∈ B≤ℓm−1
Ensure: Ciphertext c ∈ B⌈log2 q⌉·n/8

1: m = Encodem(m) ∈ Bℓm
2: r ← Bℓr
3: m̃ = m||r ∈ Bn/8 // n/8 = ℓm + ℓr
4: r := HPKE(m̃,F(pk))
5: r := CBD1(r)
6: r̂ = NTT(r)
7: m = Encode(m̃,G(Encodeq(r̂)))
8: m̂ = NTT(m)
9: 216 · ĥ := Decodeq(pk)

10: ĉ = ĥ ◦ r̂+ m̂
11: c := Encodeq(ĉ)
12: return c

Algorithm 20: Dec(sk, c): decryption

Require: Secret key sk ∈ B⌈log2 q⌉·n/4+32

Require: Ciphertext c ∈ B⌈log2 q⌉·n/8
Ensure: Message m ∈ B≤ℓm−1

1: Parse sk = (sk1, sk2, sk3) ∈ B⌈log2 q⌉·n/8 × B⌈log2 q⌉·n/8 × B32
2: f̂ = Decodeq(sk1)
3: ĉ = Decodeq(c)

4: m = NTT−1(ĉ ◦ f̂) mod 3
5: m̂ = NTT(m)

6: 216 · ĥ−1 = Decodeq(sk2)

7: r̂ = (ĉ− m̂) ◦ ĥ−1 // RRec
8: m̃′ = (m̃′0, · · · , m̃′n−1) := Inv(m,G(Encodeq(r̂))) // Checking if m̃′ =⊥ is done in line 12
9: r′ := HPKE(m̃

′, sk3)
10: r′ := CBD1(r

′)
11: r̂′ = NTT(r′)
12: if m̃′ =⊥ or r̂ ̸= r̂′, return ⊥ // Check if m̃′ =⊥ or r′ /∈ Rq
13: else, return Decodem((m̃

′
0, · · · , m̃′ℓm−1))
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8 Parameters and Security Analysis

We define four parameter sets for NTRU+{KEM,PKE}, which are listed in Table 7 and 8, respectively.
We call them NTRU+{KEM,PKE}{576, 768, 864, 1152}, respectively, depending on the degree of the
polynomial xn − xn/2 + 1. In all parameter sets, the modulus q is set to 3457, and the coefficients of m
and r are sampled according to the distribution ψn1 (i.e., ψR = ψM = ψn1 ). For each set of (n, q, ψn1 ,M′ =
{0, 1}n), the worst-case correctness error δ′ is calculated by adding the average-case correctness error δ of
GenNTRU[ψn1 ] and the value ∆ = ∥ψR∥ · (1+

√
(ln |M′| − ln∥ψR∥)/2) using the equation from Theorem

3.2. Since ∆ is negligible for all parameter sets, the worst-case correctness error of NTRU+{KEM,PKE}
is almost equal to the average-case correctness error of each corresponding GenNTRU[ψn1 ] as expected.

Scheme
classical quantum

LWE NTRU LWE NTRU
NTRU+{KEM,PKE}576 115 114 102 101
NTRU+{KEM,PKE}768 164 164 144 144
NTRU+{KEM,PKE}864 189 189 167 166
NTRU+{KEM,PKE}1152 263 266 234 233

Table 6: Concrete Security Level relative to LWE and NTRU problems

To estimate the concrete security level of NTRU+{KEM,PKE}, we analyze the hardness of the two
problems RLWEn,q,ψn

1
and NTRUn,q,ψn

1
based on each parameter set. For the RLWE problem, we employ

the Lattice estimator [1], which uses the BKZ lattice reduction algorithm [11] for the best-known lattice
attacks such as the primal [2] and dual [28] attacks. Next, for the NTRU problem, we use the NTRU
estimator provided by the finalist NTRU [10], which is based on the primal attack and Howgrave-Graham’s
hybrid attack [22] over the NTRU lattice. The primal attack over the NTRU lattice is essentially the same
as the attack using the BKZ algorithm, and Howgrave-Graham’s hybrid attack is also based on the BKZ
algorithm combined with Odlyzko’s Meet-in-the-Middle (MitM) attack [25] on a (reduced) sub-lattice. As
a result, the concrete security level of the NTRU problem is almost the same as that of the RLWE problem.
Table 6 shows the resulting security levels relative to the RLWE and NTRU problems, depending on each
NTRU+{KEM,PKE} parameter set. For the cost model of the BKZ algorithm, we employ 20.292β [4] and
20.257β [9] for the classical and quantum settings, respectively.

Recently, Lee et al. [26] proposed a combinatorial attack that improves upon May’s Meet-LWE attack
[31] and analyzed the concrete security level of NTRU+{KEM,PKE}. Their analysis demonstrated that
the security of NTRU+{KEM,PKE} against their combinatorial attack does not degrade below the level
predicted by the above Lattice and NTRU estimators.

9 Performance Analysis

All benchmarks were obtained on a single core of an Intel Core i7-8700K (Coffee Lake) processor clocked at
3700 MHz. The benchmarking machine was equipped with 16 GB of RAM. Implementations were compiled
using gcc version 11.4.0. Table 7 and 8 list the execution time of the reference and AVX2 implementations of
NTRU+{KEM,PKE}, NTRU, and KYBER, along with the security level, the size of the secret key, public
key, and ciphertext. The execution time was measured as the average cycle counts of 100,000 executions
for the respective algorithms. The source code for NTRU+{KEM,PKE} can be downloaded from https:
//github.com/ntruplus/ntruplus.

57

https://github.com/ntruplus/ntruplus
https://github.com/ntruplus/ntruplus


Ta
bl

e
7:

C
om

pa
ri

so
n

be
tw

ee
n

th
e

fin
al

is
tN

T
R

U
,K

Y
B

E
R

an
d
N
T
R
U
+
K
E
M

Sc
he

m
e

se
cu

ri
ty

le
ve

l
n

q
p
k

ct
sk

lo
g
2
δ′

re
fe

re
nc

e
AV

X
2

cl
as

si
ca

l
qu

an
tu

m
G
en

E
n
ca
p

D
ec
ap

G
en

E
n
ca
p

D
ec
ap

N
T
R
U
+
K
E
M
57

6
11

4
10

1
57

6
34

57
86

4
86

4
17

60
-4

87
17

2
84

10
1

24
23

14
N
T
R
U
+
K
E
M
76

8
16

4
14

4
76

8
34

57
11

52
11

52
23

36
-3

79
19

5
10

3
12

7
26

27
16

N
T
R
U
+
K
E
M
86

4
18

9
16

6
86

4
34

57
12

96
12

96
26

24
-3

40
24

4
12

8
16

8
28

31
20

N
T
R
U
+
K
E
M
11

52
26

3
23

3
11

52
34

57
17

28
17

28
34

88
-2

60
37

5
16

6
20

5
42

40
26

K
Y

B
E

R
51

2
11

8
10

4
51

2
33

29
80

0
76

8
16

32
-1

39
11

6
13

7
15

8
36

39
24

K
Y

B
E

R
76

8
18

2
16

0
76

8
33

29
11

84
10

88
24

00
-1

64
18

2
20

3
23

0
51

55
37

K
Y

B
E

R
10

24
25

5
22

4
10

24
33

29
15

68
15

68
31

68
-1

74
27

1
32

2
35

9
65

73
52

n
tr
u
h
p
s2
04

85
09

10
4

93
50

9
20

48
69

9
69

9
93

5
-∞

80
44

74
6

13
83

37
9

26
1

33
n
tr
u
h
rs
s7
01

13
3

11
9

70
1

81
92

11
38

11
38

14
50

-∞
14

69
8

10
33

26
30

36
7

16
5

52
n
tr
u
h
p
s2
04

86
77

14
4

12
7

67
7

20
48

93
0

93
0

12
34

-∞
13

94
2

12
02

24
45

54
4

34
7

49
n
tr
u
h
p
s4
09

68
21

17
8

15
8

82
1

40
96

12
30

12
30

15
90

-∞
20

42
4

16
45

35
23

70
5

42
1

62
n

:p
ol

yn
om

ia
ld

eg
re

e
of

th
e

ri
ng

.
q:

m
od

ul
us

.
(p
k
,c
t,
sk

):
by

te
s.

δ′
:w

or
st

-c
as

e
(o

rp
er

fe
ct

)c
or

re
ct

ne
ss

er
ro

r.
(G
en

,E
n
ca
p

,D
ec
ap

):
K

cy
cl

es
of

re
fe

re
nc

e
or

AV
X

2
im

pl
em

en
ta

tio
ns

.

58



Ta
bl

e
8:

C
om

pa
ri

so
n

be
tw

ee
n
N
T
R
U
+
P
K
E

,fi
na

lis
tN

T
R

U
,a

nd
K

Y
B

E
R

Sc
he

m
e

Se
cu

ri
ty

n
q

p
k

ct
sk

(ℓ
m
,ℓ
r
)

lo
g
2
δ′

re
fe

re
nc

e
AV

X
2

c
q

G
en

E
n
c

D
ec

G
en

E
n
c

D
ec

N
T
R
U
+
P
K
E
57

6
11

4
10

1
57

6
34

57
86

4
86

4
17

60
(3

3,
39

)
-4

87
17

1
84

10
1

24
22

14
N
T
R
U
+
P
K
E
76

8
16

4
14

4
76

8
34

57
11

52
11

52
23

36
(3

3,
63

)
-3

79
19

6
10

3
12

8
26

27
17

N
T
R
U
+
P
K
E
86

4
18

9
16

6
86

4
34

57
12

96
12

96
26

24
(3

3,
75

)
-3

40
24

5
12

8
16

8
28

31
20

N
T
R
U
+
P
K
E
11

52
26

3
23

3
11

52
34

57
17

28
17

28
34

88
(3

3,
11

1)
-2

60
37

9
16

9
21

1
42

39
26

K
Y

B
E

R
51

2
11

8
10

4
51

2
33

29
80

0
81

6
16

32
N

/A
-1

39
11

6
14

0
16

1
36

42
27

K
Y

B
E

R
76

8
18

2
16

0
76

8
33

29
11

84
12

32
24

00
N

/A
-1

64
18

2
20

6
23

5
51

59
40

K
Y

B
E

R
10

24
25

5
22

4
10

24
33

29
15

68
16

16
31

68
N

/A
-1

74
27

0
32

4
36

2
65

77
56

n
tr
u
h
p
s2
04

85
09

10
4

93
50

9
20

48
69

9
74

7
93

5
N

/A
-∞

80
58

75
1

13
93

37
7

26
5

37
n
tr
u
h
rs
s7
01

13
3

11
9

70
1

81
92

11
38

11
86

14
50

N
/A

-∞
14

68
7

10
32

26
32

36
4

16
8

55
n
tr
u
h
p
s2
04

86
77

14
4

12
7

67
7

20
48

93
0

97
8

12
34

N
/A

-∞
13

90
5

12
08

24
56

54
3

35
2

52
n
tr
u
h
p
s4
09

68
21

17
8

15
8

82
1

40
96

12
30

12
78

15
90

N
/A

-∞
20

42
6

16
52

35
35

70
4

42
7

66
c:

cl
as

si
ca

ls
ec

ur
ity

le
ve

l.
q:

qu
an

tu
m

se
cu

ri
ty

le
ve

l.
n

:p
ol

yn
om

ia
ld

eg
re

e
of

th
e

ri
ng

.q
:m

od
ul

us
.(
p
k
,c
t,
sk
,ℓ
m
,ℓ
r
):

by
te

s.
δ′

:w
or

st
-c

as
e

(o
rp

er
fe

ct
)c

or
re

ct
ne

ss
er

ro
r.

(G
en

,E
n
c,
D
ec

):
K

cy
cl

es
of

re
fe

re
nc

e
or

AV
X

2
im

pl
em

en
ta

tio
ns

.
∗:

m
ea

ns
th

at
32

-b
yt

e
m

es
sa

ge
s

ar
e

en
cr

yp
te

d
us

in
g

A
E

S-
25

6-
G

C
M

.

59



When comparing NTRU and NTRU+KEM, Table 7 shows that both schemes have similar bandwidth
(consisting of a public key and a ciphertext) at comparable security levels. For instance, NTRU+KEM864
at the 189-bit security level requires a bandwidth of 2,592 bytes, and ntruhps4096821 at the 178-bit se-
curity level requires a bandwidth of 2,460 bytes. In terms of storage cost with respect to the secret key,
NTRU+KEM requires almost twice as much storage cost as NTRU. This is because NTRU+KEM stores
(f ,h−1,F(pk)) as a secret key rather than only f . However, in terms of execution time, NTRU+KEM
outperforms NTRU, primarily depending on whether NTT-friendly rings are used.

When comparing KYBER and NTRU+KEM, the bandwidth of NTRU+KEM is slightly larger than
that of KYBER at similar security levels. This is because KYBER uses a rounding technique to reduce the
size of a ciphertext. In terms of efficiency, Table 7 shows that, at similar security levels, the key generation
of NTRU+KEM is slower than that of KYBER in the reference implementation. However, the encapsu-
lation and decapsulation of NTRU+KEM is faster than that of KYBER in both the reference and AVX2
implementations.
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[19] Chenar Abdulla Hassan and Oğuz Yayla. Radix-3 NTT-based polynomial multiplication for lattice-
based cryptography. Cryptology ePrint Archive, Report 2022/726, 2022.

[20] Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman. NTRU: A ring-based public key cryptosystem.
In Third Algorithmic Number Theory Symposium (ANTS), volume 1423 of Lecture Notes in Computer
Science, pages 267–288. Springer, June 1998.

[21] Dennis Hofheinz, Kathrin Hövelmanns, and Eike Kiltz. A modular analysis of the Fujisaki-Okamoto
transformation. In Yael Kalai and Leonid Reyzin, editors, TCC 2017: 15th Theory of Cryptography
Conference, Part I, volume 10677 of Lecture Notes in Computer Science, pages 341–371, Baltimore,
MD, USA, November 12–15, 2017. Springer, Cham, Switzerland.

[22] Nick Howgrave-Graham. A hybrid lattice-reduction and meet-in-the-middle attack against NTRU. In
Alfred Menezes, editor, Advances in Cryptology – CRYPTO 2007, volume 4622 of Lecture Notes in
Computer Science, pages 150–169, Santa Barbara, CA, USA, August 19–23, 2007. Springer, Berlin,
Heidelberg, Germany.

[23] Nick Howgrave-Graham, Phong Q. Nguyen, David Pointcheval, John Proos, Joseph H. Silverman, Ari
Singer, and William Whyte. The impact of decryption failures on the security of NTRU encryption.
In Dan Boneh, editor, Advances in Cryptology – CRYPTO 2003, volume 2729 of Lecture Notes in
Computer Science, pages 226–246, Santa Barbara, CA, USA, August 17–21, 2003. Springer, Berlin,
Heidelberg, Germany.

[24] Nick Howgrave-Graham, Joseph H. Silverman, Ari Singer, and William Whyte. NAEP: Provable
security in the presence of decryption failures. Cryptology ePrint Archive, Report 2003/172, 2003.

[25] Nick Howgrave-Graham, Joseph H. Silverman, and William Whyte. A meet-in-the-middle attack on
an ntru private key. Technical report, NTRU Cryptosystems, 2003. available at https://ntru.org/f/tr/
tr004v2.pdf.

[26] Eunmin Lee, Joohee Lee, and Yuntao Wang. Improved meet-LWE attack via ternary trees. Cryptology
ePrint Archive, Report 2024/824, 2024.

[27] Joohee Lee, Minju Lee, Hansol Ryu, and Jaehui Park. A novel CCA attack for NTRU+ KEM. Cryp-
tology ePrint Archive, Report 2023/1188, 2023.

[28] Richard Lindner and Chris Peikert. Better key sizes (and attacks) for LWE-based encryption. In Agge-
los Kiayias, editor, Topics in Cryptology – CT-RSA 2011, volume 6558 of Lecture Notes in Computer
Science, pages 319–339, San Francisco, CA, USA, February 14–18, 2011. Springer, Berlin, Heidel-
berg, Germany.

[29] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learning with errors over
rings. In Henri Gilbert, editor, Advances in Cryptology – EUROCRYPT 2010, volume 6110 of Lecture
Notes in Computer Science, pages 1–23, French Riviera, May 30 – June 3, 2010. Springer, Berlin,
Heidelberg, Germany.

62

https://ntru.org/f/tr/tr004v2.pdf
https://ntru.org/f/tr/tr004v2.pdf


[30] Vadim Lyubashevsky and Gregor Seiler. NTTRU: Truly fast NTRU using NTT. IACR Transactions
on Cryptographic Hardware and Embedded Systems, 2019(3):180–201, 2019.

[31] Alexander May. How to meet ternary LWE keys. In Tal Malkin and Chris Peikert, editors, Advances
in Cryptology – CRYPTO 2021, Part II, volume 12826 of Lecture Notes in Computer Science, pages
701–731, Virtual Event, August 16–20, 2021. Springer, Cham, Switzerland.

[32] Tsunekazu Saito, Keita Xagawa, and Takashi Yamakawa. Tightly-secure key-encapsulation mech-
anism in the quantum random oracle model. In Jesper Buus Nielsen and Vincent Rijmen, editors,
Advances in Cryptology – EUROCRYPT 2018, Part III, volume 10822 of Lecture Notes in Computer
Science, pages 520–551, Tel Aviv, Israel, April 29 – May 3, 2018. Springer, Cham, Switzerland.

[33] Peter Schwabe, Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyuba-
shevsky, John M. Schanck, Gregor Seiler, and Damien Stehlé. CRYSTALS-KYBER. Technical re-
port, National Institute of Standards and Technology, 2020. available at https://csrc.nist.gov/projects/
post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions.

[34] Michael Scott. Slothful reduction. Cryptology ePrint Archive, Report 2017/437, 2017.

[35] Victor Shoup. Sequences of games: a tool for taming complexity in security proofs. Cryptology ePrint
Archive, Report 2004/332, 2004.

[36] Dominique Unruh. Quantum position verification in the random oracle model. In Juan A. Garay and
Rosario Gennaro, editors, Advances in Cryptology – CRYPTO 2014, Part II, volume 8617 of Lecture
Notes in Computer Science, pages 1–18, Santa Barbara, CA, USA, August 17–21, 2014. Springer,
Berlin, Heidelberg, Germany.

[37] Dominique Unruh. Revocable quantum timed-release encryption. In Phong Q. Nguyen and Elisa-
beth Oswald, editors, Advances in Cryptology – EUROCRYPT 2014, volume 8441 of Lecture Notes
in Computer Science, pages 129–146, Copenhagen, Denmark, May 11–15, 2014. Springer, Berlin,
Heidelberg, Germany.

[38] Jiang Zhang, Dengguo Feng, and Di Yan. NEV: Faster and smaller NTRU encryption using vec-
tor decoding. In Jian Guo and Ron Steinfeld, editors, Advances in Cryptology – ASIACRYPT 2023,
Part VII, volume 14444 of Lecture Notes in Computer Science, pages 157–189, Guangzhou, China,
December 4–8, 2023. Springer, Singapore, Singapore.

[39] Zhenfei Zhang, Cong Chen, Jeffrey Hoffstein, and William Whyte. NTRUEncrypt. Technical re-
port, National Institute of Standards and Technology, 2017. available at https://csrc.nist.gov/projects/
post-quantum-cryptography/post-quantum-cryptography-standardization/round-1-submissions.

63

https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-1-submissions


A Factoring the trinomial

For a better understanding of applying NTT, we describe how to factor a polynomial in a ring Z3457[x]/⟨x576−
x288 + 1⟩. By utilizing the Radix-2 NTT layer for the cyclotomic trinomial, we can factor x576 − x288 + 1
as follows:

x576 − x288 + 1 = (x288 − ζ72)(x288 − ζ360).

Here, ζℓ/6 = ζ72 represents a primitive sixth root of unity modulo q. Consequently, we can observe that we
can apply a Radix-3 NTT layer because both x288 − ζ72 and x288 − ζ360 can be factorized as:

x288 − ζ72 = (x96 − ζ24)(x96 − ζ24ω)(x96 − ζ24ω2) = (x96 − ζ24)(x96 − ζ168)(x96 − ζ312)
x288 − ζ360 = (x96 − ζ120)(x96 − ζ120ω)(x96 − ζ120ω2) = (x96 − ζ120)(x96 − ζ264)(x96 − ζ408).

Here, ω = ζℓ/3 = ζ144 is a primitive third root of unity modulo q. Similarly, we can observe that we can
apply a Radix-2 NTT layer because both x96 − ζ24 and x96 − ζ120 can be further factored by half. For
example, x96 − ζ32 can be factored as:

x96 − ζ24 = (x48 − ζ12)(x48 + ζ12) = (x48 − ζ12)(x48 − ζ12ζℓ/2) = (x48 − ζ12)(x48 − ζ228)

Here, ζℓ/2 = ζ216 is a primitive second root of unity modulo q. If we continue this process, we can factor
the polynomial x576 − x288 + 1 all the way down to the degree d = 4.

B Radix-3 NTT layer

For a clearer understanding, we describe the Radix-3 NTT layer used in our implementation. The Radix-3
NTT layer establishes a ring isomorphism between Zq[x]/⟨xn − α3⟩ and the product ring Zq[x]/⟨xn/3 −
α⟩ ×Zq[x]/⟨xn/3 − β⟩ ×Zq[x]/⟨xn/3 − γ⟩, where β = αω, and γ = αω2 (with ω representing a primitive
third root of unity modulo q). To transform a polynomial a(x) = a0(x) + a1(x)x

n/3 + a2(x)x
2n/3 ∈

Zq[x]/⟨xn−α3⟩ (where a0(x), a1(x), and a2(x) are polynomials with a maximum degree of n/3− 1) into
the form (â0(x), â1(x), â2(x)) ∈ Zq[x]/⟨xn/3−α⟩ ×Zq[x]/⟨xn/3− β⟩ ×Zq[x]/⟨xn/3− γ⟩, the following
equations must be computed.

â0(x) = a0(x) + a1(x)α+ a2(x)α
2,

â1(x) = a0(x) + a1(x)β + a2(x)β
2,

â2(x) = a0(x) + a1(x)γ + a2(x)γ
2.

Naively, these equations might appear to require 2n multiplications and 2n additions, using six predefined
values: α, α2, β, β2, γ, and γ2. Nevertheless, by following the techniques in [19], we can significantly
reduce this computational load to n multiplications, n additions, and 4n/3 subtractions, by using only three
predefined values: α, α2, and ω, as described in Algorithm 21.

â0(x) = a0(x) + a1(x)α+ a2(x)α
2

â1(x) = a0(x)− a2(x)α2 + ω(a1(x)α− a2(x)α2)

â2(x) = a0(x)− a1(x)α− ω(a1(x)α− a2(x)α2)
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Algorithm 21: Radix-3 NTT layer

Require: a(x) = a0(x) + a1(x)x
n/3 + a2(x)x

2n/3 ∈ Zq[x]/⟨xn − ζ3⟩
Ensure: (â0(x), â1(x), â2(x)) ∈ Zq[x]/⟨xn/3 − α⟩ × Zq[x]/⟨xn/3 − β⟩ × Zq[x]/⟨xn/3 − γ⟩

1: t1(x) = a1(x)α
2: t2(x) = a2(x)α

2

3: t3(x) = (t1(x)− t2(x))w
4: â2(x) = a0(x)− t1(x) + t3(x)
5: â1(x) = a0(x)− t1(x) + t3(x)
6: â0(x) = a0(x)− t1(x) + t3(x)
7: return (â0(x), â1(x), â2(x))

Considering the aforementioned Radix-3 NTT layer, we need to compute the following equations to
recover a(x) ∈ Zq[x]/⟨xn − ζ3⟩ from (â0(x), â1(x), â2(x)) ∈ Zq[x]/⟨xn/3 − α⟩ × Zq[x]/⟨xn/3 − β⟩ ×
Zq[x]/⟨xn/3 − γ⟩.

3a0(x) = â0(x) + â1(x) + â2(x),

3a1(x) = â0(x)α
−1 + â1(x)β

−1 + â2(x)γ
−1,

3a2(x) = â0(x)α
−2 + â1(x)β

−2 + â2(x)γ
−2.

Naively, these equations might appear to require 2n multiplications and 2n additions, using six predefined
values: α−1, α−2, β−1, β−2, γ−1, and γ−2. Nevertheless, by following the techniques in [19], we can
significantly reduce this computational load to n multiplications, n additions, and 4n/3 subtractions, by
employing only four predefined values: α−1, α−2, and ω, as described in in Algorithm 22.

3a0(x) = â0(x) + â1(x) + â2(x)

3a1(x) = α−1(â0(x)− â1(x)− w(â1(x)− â2(x)))
3a2(x) = α−2(â0(x)− â2(x) + w(â1(x)− â2(x)))

Algorithm 22: Radix-3 Inverse NTT layer

Require: (â0(x), â1(x), â2(x)) ∈ Zq[x]/⟨xn/3 − α⟩ × Zq[x]/⟨xn/3 − β⟩ × Zq[x]/⟨xn/3 − γ⟩
Ensure: 3a(x) = 3a0(x) + 3a1(x)x

n/3 + 3a2(x)x
2n/3 ∈ Zq[x]/⟨xn − α3⟩

1: t1(x) = w(â1(x)− â2(x))
2: t2(x) = â0(x)− â1(x)− t1(x)
3: t3(x) = â0(x)− â2(x) + t1(x)
4: 3a0(x) = â0(x) + â1(x) + â2(x)
5: 3a1(x) = t2(x)α

−1

6: 3a2(x) = t3(x)α
−2

7: return 3a(x) = 3a0(x) + 3a1(x)x
n/3 + 3a2(x)x

2n/3

Note that we can reuse the predefined table used for NTT in the computation of Inverse NTT.

3a0(x) = â0(x) + â1(x) + â2(x)

3a1(x) = (wα−1)(â2(x)− â0(x)− (â1(x)− â0(x))w)
3a2(x) = (w2α−2)(â2(x)− â1(x) + (â1(x)− â0(x))w)
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