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Changelog

Version 1.1

In terms of the specification, the primary changes are as follows:

1.

Modifying the Inv function of SOTP to defend against Lee’s attacks

In June 2023, Joohee Lee announced a chosen-ciphertext attack against NTRU+KEM, which oc-
curred due to the absence of the bit-checking process in the Inv function. Version 1.1 of NTRU+KEM
addressed this issue by adding the bit-checking process and providing a more clarified definition of
SOTP.

. Modifying the Encap and Decap algorithms to consider multi-target attacks

In Version 1.0, NTRU+KEM did not consider the multi-target attacks. To achieve the multi-target
security in Version 1.1, we have adopted the well-known technique to add the hash value F(pk) of the
public key pk into the hashing such as (r, K') = H(m, F(pk)) when applying the Fujisaki-Okamoto
transform. Accordingly, we also have changed the secret key into sk = (f,h™' F(pk)), which
increases the secret key size by 32 bytes in all sets of parameters.

. Modifying the NTT structure for NTRU+KEM576 and NTRU+KEM1152

The ring structures for NTRU+KEM576 and NTRU+KEM1152 can be factored all the way down
to [ Zq[z]/(x — ;). When applying NTT for [, Z4[z]/(x — ¢;), n modular inversions are
required during key generation to compute f . To reduce the number of modular inversions by n/2,
we have factored the rings into HZL:/ ?) Zg|x]/(x? — ;) in Version 1.0. However, in Version 1.1, we
have further reduced the n modular inversions by n/3 by applying NTT for H?:/ ?6 Zylz] /{23 = ).

Clarification regarding randomness-polynomial sampling from binary bit-strings
In Encap of Version 1.0, the coefficients of the randomness-polynomial r were described as if they
were composed of bit strings. In Version 1.1, we clarified this mistake by defining r := CBD;(r).

Next, in terms of our implementation, the changes are as follows:

1.
2.

Modifying the Inv algorithm of SOTP to defend against Lee’s attacks

Modifying the Encap and Decap algorithms to consider multi-target attacks

. Modifying the NTT structure for NTRU+KEM576 and NTRU+KEM1152

This allows for improving the key generation timings and reducing the size of pre-computation tables.

Modifying the Radix-3 NTT implementation

Implementing Radix-3 NTT naively requires 2n multiplications per layer. In Version 1.0, we reduced
this to 4n/3 multiplications, but by adapting the recent result (https://eprint.iacr.org/2022/726.pdf),
we can further reduce the number of multiplications from 4n/3 to n.

. Removing the dependencies on OpenSSL and AVX in Reference implementation

The initial implementation of NTRU+KEM was mainly based on the code of NTTRU (that are found
in ‘https://github.com/gregorseiler/NTTRU'), which uses AVX assembly codes for the implementa-
tion of AES-256-CTR. Also, the initial implementation used the ‘rng.c’ provided by NIST, which
also has OpenSSL dependencies. To remove those dependencies, we have referred to the code of
CRYSTALS-Kyber (https://github.com/pg-crystals/kyber).
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6. Reducing the size of the pre-computation table in Reference implementation
In Version 1.0, performing NTT and Inverse NTT operations required two separate pre-computation
tables. The revised implementation have changed to use a single table by adapting the code of
CRYSTALS-Kyber, along with our additional manipulation to support the Radix-3 NTT layer.

Version 2.0

In terms of the specification, the primary changes are as follows:

1. In Version 1.1, we adapted countermeasures against the attack proposed by Joohee Lee. However,
some ambiguity remained in the proof of Lemma[.3] In Version 2.0, we addressed these issues by
making the following modifications:

(a) Redefined the definition of injectivity and rigidity of PKE in Section[2.2] along with revising the
analysis of injectivity and rigidity for GenNTRU[¢}] in Section

(b) Redefined the definition of rigidity for SOTP in Section [3.1} and revised the analysis of rigidity
for the instantiation of SOTP used in CPA-NTRU+ in Section [6.2.1

(c¢) Slightly modified the definition of the ACWC, transformation in Section
(d) Updated Theorems [3.5]and 3.6]to reflect the redefined definition of injectivity.
(e) Modified Sectiond.2](and Lemma[4.3)) to address the comments made by Joohee Lee.

2. We propose a new NTRU-based IND-CCA secure PKE called ’'NTRU+PKE’.

NTRU+PKE is constructed by applying a variant of FO#KE, called ﬁiEM, to CPA-NTRU+. Here,
FO#KE refers to the transformation proposed in [17], which converts IND-CPA secure PKE into IND-
CCA secure PKE. To avoid confusion, we rename the previous NTRU+ to NTRU+KEM.

3. To provide the theoretical background for NTRU+PKE, we include the following:

(a) We analyze the security of FOéKE in ROM and QROM, by taking into account correctness errors
that were not clearly addressed in the analysis of [[17]]. It can be found in Theorem [5.T]and[5.2]

(b) We analyze the equivalence between FOp, g and @éKE in Lemma 5.3] similar to Lemma[4.3]

4. We correct some errors in Appendix [B] which is necessary for reusing the predefined table in order to
compute the Inverse NTT.

Version 2.1

Following Professor D. J. Bernstein’s comments on the implementation of NTRU+ (https://groups.google.
com/g/kpqc-bulletin/c/exrFyRPhFJ8), we investigated and identified errors in the AVX2 implementation of
NTRU+. The following changes were made:

1. Changes in NTRU+{KEM, PKE}864
Memory access violations were discovered and corrected in the ‘poly_add’, ‘poly_sub’, and ‘poly_triple’
functions.

2. Changes in NTRU+{KEM, PKE}1152
An error in the ‘poly_sotp’ function was found, where ‘vmovdqa’ was applied to non-aligned memory.
This was corrected by replacing ‘vmovdqga’ with ‘vmovdqu’.
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3. Other Adjustments
To address warnings regarding the End of File (EOF) encountered during clang compilation, necessary
adjustments were made throughout the codebase.

Version 2.2

The primary changes to the specification are as follows:

1. Definition of Hash Function
Following comments by Dr. Seongkwang Kim indicating that AES256CTR is not suitable for in-
stantiating the random oracle model (https://groups.google.com/g/kpqc-bulletin/c/C-mtPvzo3QA/m/
vuQOsis6AgAl), we revised how we instantiate the hash functions G, HKEM, and HPKE in the spec-
ification by replacing AES256CTR with SHAKE256.

2. Definition of SOTP
To reduce confusion in the definition of SOTP, we changed the notation. Previously, the function
for encoding messages was named SOTP, and the function for recovering messages was named Inv.
However, the encoding function has now been renamed to Encode. SOTP is defined as including both
functions, Encode and Inv, and is expressed as SOTP = (Encode, Inv).

3. Changes in the Key Generation
In the key generation process, f and g were originally sampled together from the same random seed
until both were invertible. To enhance efficiency, we separated the sampling of the invertible poly-
nomials f and g: first, we sample f until it is invertible, then we sample ¢ until it is invertible. This
sequential sampling minimizes unnecessary rejections. Additionally, f and g are now generated using
separate random seeds.

4. Changes in the NTT Structures

To improve the efficiency of key generation, we reduced the number of modular inverse operations,
which are the most computationally intensive part of the key generation process, by modifying the
way the NTT is applied. As mentioned in the changelog of Version 1.1, the ring structures of
NTRU+{KEM, PKE}{576,1152} can be factored as [/~ Z g x]/{x — Q). Additionally, the ring
structure of NTRU+{KEM, PKE}768 can be factored as HZ 0 Zq|x)/{x? — ;). To further reduce
the number of modular inversions for the parameter sets NTRU—I—{KEM PKE}{576,768,1152}, we
modified the application of the NTT to factor the ring as ]_[z 0 Zglx)/(xt = ).

5. Spreadness of PKE' = ACWC,[PKE,SOTP, G]
We re-analyzed the spreadness of the PKE' = ACWC,[PKE,SOTP, G] in Section In PKE/,
SOTP = (Encode, Inv) is used as Encode(m, G(r)) with a hash function G. In the underlying PKE,
a ciphertext is generated as ¢ = Enc(pk, Encode(m, G(r)); 7). To analyze ~y-spreadness, the message
m must be fixed for each randomness 7 (honestly chosen from R). However, when using SOTP, the
encoded message Encode(m, G(r)) also changes as r changes. In the previous analysis, we did not
consider this point, so we revise the proof of v-spreadness.

6. Parameter Adjustment in NTRU+PKE
To conservatively set the parameters, we modified the maximum message length supported by NTRU+PKE
to 32 bytes for all parameter sets NTRU+PKE{576, 768, 864, 1152}.
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7. Revisions to the Definition of PKE
In response to comments by Prof. Sven Schige through private email communication, we updated
the definition of PKE, rigidity of PKE. Also, we included the definition of weakly spreadness in [15]],
which is weaker version of spreadness defined in [21]. Based on the changed definitions, we revised
the lemmas [4.3]and

8. Revisions to Lemma
In response to comments by Prof. Joohee Lee presented at the 8th KpqC workshop, we updated the
proofs of Lemma [4.3] Specifically, Prof. Joohee Lee noted that the precondition for applying the
rigidity of PKE in Lemma [.3| was not fully satisfied.

Changes to the implementation are as follows:

1. Source Code for the Hash Functions
We replaced the source code of SHA256 and additionally used the source code for SHAKE256,
adapted from https://github.com/kpqc-cryptocraft/KpqClean_ver?2.

2. Changes in the Key Generation

To improve the efficiency of key generation, we adopted an early abort approach when checking the
invertibility of a polynomial. When checking the invertibility of a polynomial, we need to verify that
it is invertible in all rings Z,[z]/(z? — (;). For efficiency, we abort as soon as we find the first ring
in which the polynomial is not invertible. One may wonder whether this type of early abort could
leak information about the randomness used to sample the polynomial. However, since the rejected
polynomial is not reused as part of the secret key, we believe this approach is secure, provided that
the underlying randombytes function is forward-secure.

3. Changes in Ring Multiplication and Inversion
4

We implemented ring operations in Hf:/ é_l Zqlx]/(x* — w), which are required to realize the newly
proposed NTT structure in Version 2.2 for the parameter sets NTRU+{KEM, PKE} {576, 768, 1152}.

We referred to the ideas presented in [38] to implement the inversion in Z,[z]/{z* — w).

Additionally, to improve the efficiency of key generation, we adopted lazy Montgomery reduction [34]
. . . . . s . N d—1

in the implementation of ring operations (multiplication and inversion) in H?:/ o Zglx]/{z?—w) for
d = 3,4. During multiplication and inversion, we need to compute the sum of several products of
polynomial coefficients. To reduce the number of Montgomery and Barrett reductions, we applied

Montgomery reduction after accumulating the 32-bit data.

Lastly, to enhance the efficiency of the modular inversion using Fermat’s Little Theorem, ! = a2
(mod ¢), we leveraged the binary structure of ¢ — 2 = 3455 = 1101011111114y, inspired by the fast
modular inversion in Curve25519 [5]. While the standard square-and-multiply approach requires 20
fgmul operations, we reduced this number to 16 by reusing intermediate values.

Version 2.2.1

In this version, we corrected typographical errors in Table [5] specifically regarding the number of Radix-2
NTT layers required. Additionally, the following changes were made in the implementation:

1. Adjustment in Lazy Barrett Reduction
While the code functioned correctly, there was an issue with the placement of Barrett reduction in the
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inverse NTT implementation in worst-case scenarios. To resolve this, we adjusted the placement of
Barrett reduction across all relevant parts of the code. In the optimized implementation, we further
minimized the use of Barrett reduction by unrolling loops in the inverse NTT. Note that, prior to
Version 2.2.1, the reference and optimized implementations were identical. However, starting with
Version 2.2.1, we have decided to manage them separately.

. Replacing Barrett Reduction with Montgomery Reduction

In both the reference and optimized implementations, Barrett reduction was applied at the end of the
NTT layers. In the optimized implementation, we replaced the Barrett reduction with Montgomery
reduction in the final NTT layer to improve performance.

. Updates to consts.c for AVX2
We revised the values in the ‘consts.c® file for NTRU+{KEM, PKE}864, which were previously set
in the range 0 to ¢ — 1. These values have now been updated to the range —(¢ — 1)/2to (¢ — 1)/2.
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Abstract

NTRU was the first practical public key encryption scheme constructed on a lattice over a polynomial-
based ring and has been considered secure against significant cryptanalytic attacks over the past few
decades. However, NTRU and its variants suffer from several drawbacks, including difficulties in achiev-
ing worst-case correctness error in a moderate modulus, inconvenient sampling distributions for mes-
sages, and relatively slower algorithms compared to other lattice-based schemes.

In this work, we propose two new NTRU-based primitives: a key encapsulation mechanism (KEM)
called ‘NTRU+KEM’ and a public key encryption (PKE) called ‘NTRU+PKE’. These new primitives
overcome nearly all the above-meifltioned drawbacks. They are constructed based on two new generic
@fformations: ACWC, and FO™. ACWC, is used to easily achieve worst-case correctness error, and
FO™ (a variant of the Fujisaki-Okamoto transf(gnﬁ is used to achieve chosen-ciphertext security without
performing re-encryption. Both ACWC, and FO  are defined using a randomness-recovery algorithm
(that is unique to NTRU) and a novel message-encoding method. In particular, our encoding method,
called the semi-generalized one-time pad (SOTP), allows us to use a message sampled from a natural
bit-string space with an arbitrary distribution. We provide four parameter sets for NTRU+{KEM, PKE}
and present implementation results using NTT-friendly rings over cyclotomic trinomials.

Keywords: NTRU, RLWE, Lattice-based cryptography, Post-quantum cryptography.

1 Introduction

The NTRU encryption scheme [20] was introduced in 1998 by Hoffstein, Pipher, and Silverman as the first
practical public key encryption scheme using lattices over polynomial rings. The hardness of NTRU is
crucially based on the NTRU problem [20], which has withstood significant cryptanalytic attacks over the
past few decades. This longer history, compared to other lattice-based problems (such as ring/module-LWE),
has been considered an important factor in selecting NTRU as a finalist in the NIST PQC standardization
process. While the finalist NTRU [10] has not been chosen by NIST as one of the first four quantum-
resistant cryptographic algorithms, it still has several distinct advantages over other lattice-based competitive
schemes such as KYBER [33]] and Saber [13]]. Specifically, the advantages of NTRU include: (1) the
compact structure of a ciphertext consisting of a single polynomial, and (2) (possibly) faster encryption and
decryption without the need to sample the coefficients of a public key polynomial.
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The central design principle of NTRU is described over aring R, = Z,[z]|/(f(z)), where g is a positive
integer and f(z) is a polynomial. The public key is generated as h = pg/(pf’ + 1)[1-], where g and f’ are
sampled according to a narrow distribution ), p is a positive integer that is coprime with ¢ and smaller than
q (e.g., 3), and the corresponding private key is f = pf’ + 1. To encrypt a message m sampled from the
message space M, one creates two polynomials r and m, with coefficients drawn from a narrow distribution
1), and computes the ciphertext ¢ = hr + m in R,. An (efficient) encoding method may be used to encode
m € M’ into m and r € R,. Alternatively, it is possible to directly sample m and r from ¢, where m is
considered as the message to be encrypted. To decrypt the ciphertext ¢, one computes cf in R, recovers m
by deriving the value c¢f’ modulo p, and (if necessary) decodes m to obtain the message m. The decryption
of NTRU works correctly if all the coefficients of the polynomial p(gr + f'm) + m are less than ¢/2.
Otherwise, the decryption fails, and the probability that it fails is called a correctness (or decryption) error.

In the context of chosen-ciphertext attacks, NTRU, like other ordinary public key encryption schemes,
must guarantee an extremely negligible worst-case correctness error. This is essential to prevent the leak-
age of information about the private key through adversarial decryption queries, such as attacks against
lattice-based encryption schemes [[12} 23]]. Roughly speaking, the worst-case correctness error refers to the
probability that decryption fails for any ciphertext that can be generated with all possible messages and
randomness in their respective spaces. The worst-case correctness error considers that an adversary, A4, can
maliciously choose messages and randomness without sampling normally according to their original distri-
butions (if possible). In the case of NTRU, the failure to decrypt a specific ciphertext ¢ = hr 4+ m provides
A with the information that one of the coefficients of p(gr + f'm) + m is larger than or equal to ¢/2. If
A has control over the choice of r and m, even one such decryption failure may open a path to associated
decryption queries to obtain more information about secret polynomials g and f.

When designing NTRU, two approaches can be used to achieve worst-case correctness error. One ap-
proach is to draw m and r directly from ¢, while setting the modulus ¢ to be relatively large. The larger ¢
guarantees a high probability that all coefficients of p(gr-+f'm)+m are less than ¢/2 for nearly all possible
m and r in their spaces, although it causes inefficiency in terms of public key and ciphertext sizes. Indeed,
this approach has been used by the third-round finalist NTRU [[10], wherein all recommended parameters
provide perfect correctness error (i.e., the worst-case correctness error becomes zero for all possible m and
r). By contrast, the other approach [16] is to use an encoding method by which a message m € M’ is
used as a randomness to sample m and r according to ). Under the Fujisaki-Okamoto (FO) transform [18]],
decrypting a ciphertext ¢ requires re-encrypting m by following the same sampling process as encryption.
Thus, an ill-formed ciphertext that does not follow the sampling rule will always fail to be successfully
decrypted, implying that m and r should be honestly sampled by A according to 1. Consequently, by dis-
allowing A to have control over m and r, the NTRU with an encoding method has a worst-case correctness
error that is close to an average-case error.

Based on the aforementioned observation, [16] proposed generic (average-case to worst-case) transfor-
rnationthat make the average-case correctness error of an underlying scheme nearly close to the worst-case
error of a transformed scheme. One of their transformations (denoted by ACWC) is based on an encoding
method called the generalized one-time pad (denoted by GOTP). Roughly speaking, GOTP works as fol-
lows: a message m € M’ is first used to sample r and m; according to ¢, and ma = GOTP(m, G(my))
using a hash function G, and then m is constructed as m;||my. If the GOTP acts as a sampling function

'There is another way of creating the public key as h = pg/f, but we focus on setting h = pg/(pf’ 4 1) for a more efficient
decryption process.

They proposed two transformations called ACWC, and ACWC. In this paper, we focus on ACWC that does not expand the
size of a ciphertext.



| Scheme NTRU[10] | NTRU-B[16] |  NTRU+KEM
NTT-friendly No Yes Yes
Correctness error Perfect Worst-case Worst-case
(m, r)-encoding No Yes Yes
Message set m,r <« {—1,0,1}" m <« {—1,0,1}* m <« {0,1}"
Message distribution | Uniform/Fixed-weight Uniform Arbitrary
CCA transform DPKE + SXY variant ACWC + FOpgy ACWC, + ﬁiEM
Assumptions NTRU, RLWE NTRU, RLWE NTRU, RLWE
Tight reduction Yes No Yes

n: polynomial degree of the ring. ~ A: length of the message.

SXY variant: SXY transformation [32] described in the NTRU finalist.

DPKE: deterministic public key encryption.

Table 1: Comparison to previous NTRU constructions

wherein the output follows ¢, m and r are created from m following v, which can be verified in decryption
using the FO transform. Specifically, for two inputs m and G(m;) that are sampled from {—1,0,1}* for
some integer \, my € {—1,0,1}* is computed by doing the component-wise exclusive-or modulo 3 of two
ternary strings m and G(my ). Thus, if G(m;) follows a uniformly random distribution 1/ over {—1,0,1}*,
m is hidden from my because of the one-time pad property.

However, an ACWC based on the GOTP has two disadvantages in terms of security reduction and
message distribution. First, [16] showed that ACWC converts a one-way CPA (OW-CPA) secure underlying
scheme into a transformed one that is still OW-CPA secure, besides the fact that their security reduction
is looseE] by causing a security loss factor of ¢g, the number of random oracle queries. Second, ACWC
forces even a message m € M’ to follow a specific distribution because their security analysis of ACWC
requires GOTP to have the additional randomness-hiding property, meaning that G(m;j) should also be
hidden from the output my. Indeed, the NTRU instantiation from ACWC, called ‘NTRU-B’ [16], requires
that m should be chosen uniformly at random from M’ = {—1,0,1}*. Notably, it is difficult to generate
exactly uniformly random numbers from {—1,0, 1} in constant time due to rejection sampling. Therefore,
it was an open problem [16] to construct a new transformation that permits a different, more easily sampled
distribution of a message while relying on the same security assumptions.

1.1 Our Results

We propose a new practical NTRU construction called ‘NTRU+KEM’ that addresses the two drawbacks
of the previous ACWC. To achieve this, we introduce a new generic ACWC transformation, denoted as
ACWC,, which utilizes a simple encoding method. By using ACWCs, NTRU+KEM achieves a worst-
case correctness error close to the average-case error of the underlying NTRU. Additionally, NTRU+KEM
requires the message m to be drawn from M’ = {0,1}" (for a polynomial degree n), following an ar-
bitrary distribution with high min-entropy, and is proven to be tightly secure under the same assumptions
as NTRU-B, the NTRU and RLWE assumptions. To achieve chosen-ciphertext security, NTRU+KEM re-
lies on a novel FO-equivalent transform without re-encryption, which makes the decryption algorithm of
NTRU+KEM faster than in the ordinary FO transform. In terms of efficiency, we use the idea from [30] to

3[[16]] introduced a new security notion, g-OW-CPA, which states that an adversary outputs a set Q@ with a maximum size of
q and wins if the correct message corresponding to a challenged ciphertext belongs to (). We believe that g-OW-CPA causes a
security loss of g.



\ ACWC,[16] \ ACWC[16] \ ACWC,

Message encoding No GOTP SOTP
Message distribution Arbitrary Uniform Arbitrary
Ciphertext expansion Yes No No

Transformation OW-CPA — IND-CPA | OW-CPA — OW-CPA | OW-CPA — IND-CPA
Tight reduction No No Yes
Underlying PKE Any Any Injective + MR + RR

MR: message-recoverable.  RR: randomness-recoverable.

Table 2: Comparison to previous ACWC transformations

apply the Number Theoretic Transform (NTT) to NTRU-+KEM and therefore instantiate NTRU+KEM over
aring R, = Z,[x]/(f(x)), where f(z) = 2™ — 2™/ + 1 is a cyclotomic trinomial. By selecting appropri-
ate (n, q) and 1, we suggest four parameter sets for NTRU+KEM and provide the implementation results
for NTRU+KEM in each parameter set. Table [1] lists the main differences between the previous NTRU
constructions [10} [16] and NTRU+KEM. In the following section, we describe our technique, focusing on
these differences.

ACWC,; Transformation with Tight Reduction. ACWCs5 is a new generic transformation that allows for
the aforementioned average-case to worst-case correctness error conversion. However, to apply ACWCy, the
underlying scheme is required to have injectivity, randomness-recoverable (RR), and message-recoverable
(MR) properties, which are typical of NTRUEI Additionally, ACWC, involves an encoding method called
semi-generalized one-time pad (denoted by SOTP). In contrast to the GOTP in [16], SOTP = (Encode, Inv)
works in a generic sense as follows: first, a message m € M’ is used to sample r based on 1, and then
m = Encode(m, G(r)) is computed, where the coefficients follow 1), using a hash function G. When de-
crypting a ciphertext ¢ = Enc(pk, m;r) under a public key pk, m is recovered by a normal decryption
algorithm, and using m, r is also recovered by a randomness-recovery algorithm. Finally, an inverse of
Encode called Inv with G(r) and m yields m.

The MR property of an underlying scheme allows us to show that, without causing any security loss,
ACWC, transforms an OW-CPA secure scheme into a chosen-plaintext (IND-CPA) secure scheme. The
proof idea is simple: unless an IND-CPA adversary A queries r to a (classical) random oracle G, A does
not obtain any information on my (that .4 submits) for b € {0, 1} because of the basic message-hiding
property of SOTP. However, whenever A queries r; to G for i = 1,--- , g, a reductionist can check
whether each r; is the randomness used for its OW-CPA challenge ciphertext using a message-recovery
algorithm. Therefore, the reductionist can find the exact r; among the g number of queries if A queries r;
(with respect to its IND-CPA challenge ciphertext) to G. In this security analysis, it is sufficient for SOTP to
have the message-hiding property, which makes SOTP simpler than GOTP because GOTP must have both
message-hiding and randomness-hiding properties.

Table 2| presents a detailed comparison between previous ACWC transformations and our new ACWC,.
Unlike the previous ACWC based on GOTP, [16] proposed another generic ACWC transformation (denoted
by ACWC,) without using any message-encoding method. In ACWCy, a (bit-string) message m is encrypted
with a ciphertext ¢ = (Enc(pk, m;r), F(m) @& m) using a hash function F, which causes the ciphertext
expansion of F(m) @ m, whereas such a ciphertext redundancy does not occur in ACWC and ACWC,. Like

*In the decryption of NTRU with pk = h, given (pk, c, m), r is recovered as r = (¢ — m)h ™. Similarly, given (pk, c,r), m
is recovered as m = ¢ — hr.
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Figure 1: Overview of security reductions for KEM

ACWCy, ACWC transforms any OW-CPA secure scheme into an IND-CPA secure one, but their security
reduction is not tight as in ACWC. ACWC, and ACWC,, requires no specific message distribution, whereas
ACWC requires m € M’ to be sampled according to a uniformly random distribution from M’. ACWC,
and ACWC work for any OW-CPA secure scheme, but ACWC, works for any OW-CPA secure scheme
satisfying injectivity, MR, and RR properties.

FO-Equivalent Transform without Re-encryption. To achieve chosen-ciphertext (IND-CCA) security,
we apply the generic transform FO&EM to the ACWCy-derived scheme, which is IND-CPA secure. As
with other FO-transformed schemes, the resulting scheme from ACWC, and FOjcgy, is still required to
perform re-encryption in the decryption process to check if (1) (m, r) are correctly generated from m and
(2) a (decrypted) ciphertext c is correctly encrypted from (m,r). However, by using the RR property
of the underlying scheme, we further remove the re-encryption process from FOKEM Instead, the more
advanced transform (denoted by FOKEM) simply checks whether r from the randomness -recovery algorithm
is the same as the (new) randomness r’ created from m. We show that FOKEM is functionally identical
to FOKEM by proving that the randomness-checking process in FO&EM is equivalent to the re-encryption
process FO&EM. The equivalence proof relies mainly on the injectivity [[7, 21]] and rigidity [[6] properties of
the underlying schemes. As a result, although the RR property seems to incur some additional decryption
cost, it ends up making the decryption algorithm faster than the original FO transform. Figure[I|presents an
overview of security reductions from OW-CPA to IND-CCA.

Simple SOTP Instantiation with More Convenient Sampling Distributions. As mentioned previously,
ACWC, is based on an efficient construction of SOTP = (Encode, Inv) that takes m and G(r) as inputs
and outputs m = Encode(m, G(r)). In particular, computing m = Encode(m, G(r)) requires that each
coefficient of m should follow v, while preserving the message-hiding property. To achieve this, we set
1) as the centered binomial distribution (CBD) ¢, with £k = 1, which is easily obtained by subtracting
two uniformly random bits from each other. For a polynomial degree n and hash function G : {0,1}* —
{0,1}2", m is chosen from the message space M’ = {0,1}" for an arbitrary distribution (with high min-
entropy) and G(r) = yi||ly2 € {0,1}" x {0,1}". SOTP then computes m = (m & y1) — y2 by bitwise
subtraction and assigns each subtraction value of m to the coefficient of m. By the one-time pad property,
it is easily shown that m @ y; becomes uniformly random in {0, 1}" (and thus message-hiding) and each
coefficient of m follows 1. Since r is also sampled from a hash value of m according to 11, all sampling
distributions in NTRU+KEM are easy to implement. We can also expect that, similar to the case of 11, the
SOTP is expanded to sample a centered binomial distribution reduced modulo 3 (i.e., ,) by summing up
and subtracting more uniformly random bits.
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NTT-Friendly Rings Over Cyclotomic Trinomials. NTRU+KEM is instantiated over a polynomial ring
R, = Z,[z]/(f(x)), where f(z) = 2™ —2™/? 41 is a cyclotomic trinomial of degree n = 2'37. [30] showed
that, with appropriate parameterization of n and ¢, such a ring can also provide NTT operation essentially
as fast as that over aring R, = Z,[x]/(z" + 1). Moreover, because the choice of a cyclotomic trinomial is
moderate, it provides more flexibility to satisfy a certain level of security. Based on these results, we choose
four parameter sets for NTRU+KEM, where the polynomial degree n of f(x) = x" — 2™/2 4 1 is set to be
576, 768, 864, and 1152, and the modulus ¢ is 3457 for all cases. Table[7lists the comparison results between
finalist NTRU [10], KYBER, KYBER-90s [33], and NTRU+ in terms of security and efficiency. To estimate
the concrete security level of NTRU+KEM, we use the Lattice estimator [1]] for the RLWE problem and the
NTRU estimator [10] for the NTRU problem, considering that all coefficients of each polynomial f’, g, r,
and m are drawn according to the centered binomial distribution 1/;. The implementation results in Table
are estimated with reference and AVX2 optimizations. We can observe that NTRU+KEM outperforms
NTRU at a similar security level.

1.2 Related Works

The first-round NTRUEncrypt [39]] submission to the NIST PQC standardization process was an NTRU-
based encryption scheme with the NAEP padding method [24]. Roughly speaking, NAEP is similar to our
SOTP, but the difference is that it does not completely encode m to prevent an adversary A from choosing
m maliciously. This is due to the fact that m := NAEP(m, G(hr)) is generated by subtracting two n-bit
strings m and G(hr) from each other, i.e., m — G(hr) by bitwise subtraction, and then assigning them to the
coefficients of m. Since m can be maliciously chosen by A in NTRUEncrypt, m can also be maliciously
chosen, regardless of G(hr).

The finalist NTRU [10] was submitted as a key encapsulation mechanism (KEM) that provides four
parameter sets for perfect correctness. To achieve chosen-ciphertext security, [10] relied on a variant of
the SXY [32] conversion, which also avoids re-encryption during decapsulation. Similar to NTRU+KEM,
the SXY variant requires the rigidity [6] of an underlying scheme and uses the notion of deterministic
public key encryption (DPKE) where (m,r) are all recovered as a message during decryption. In the
NTRU construction, the recovery of r is conceptually the same as the existence of the randomness-recovery
algorithm RRec. Instead of removing re-encryption, the finalist NTRU needs to check whether (m,r) are
selected correctly from predefined distributions.

In 2019, Lyubashevsky et al. [30] proposed an efficient NTRU-based KEM called NTTRU by applying
NTT to the ring defined by a cyclotomic trinomial Z, [z] /(" —2"/241). NTTRU was based on the Dent [[14]
transformation without any encoding method, which resulted in an approximate worst-case correctness error
of 2713, even with an average-case error of 271239, To overcome this significant difference, NTTRU was
modified to reduce the message space of the underlying scheme, while increasing the size of the ciphertext.
This modification was later generalized to ACWC in [16].

In 2021, Duman et al. [16] proposed two generic transformations, ACWCy and ACWC, which aim to
make the average-case correctness error of an underlying scheme nearly equal to the worst-case error of
the transformed scheme. Specifically, ACWC introduced GOTP as an encoding method to prevent A from
adversarially choosing m. While ACWC is simple, it requires a ciphertext expansion of 32 bytes. On
the other hand, ACWC does not requires an expansion of the ciphertext size. The security of ACWCy and
ACWC was analyzed in both the classical and quantum random oracle models [16]]. However, their NTRU
instantiation using ACWC has the drawback of requiring the message m to be chosen from a uniformly
random distribution over M’ = {—1,0,1}".
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2 Preliminaries

2.1 Basic Notations

The set Z, is defined as {—(¢—1)/2,..., (¢ —1)/2}, where ¢ is a positive odd integer. Mapping an integer
a from Z to Z4 uses the modulo operation, setting x = a mod ¢ as the unique integer in Z, satisfying
q¢ | (z — a). The polynomial ring R, is defined as Z,[x]/(f(x)) with a polynomial f(z). Cyclotomic
trinomials ®3,,(z) = 2" — 2™/? + 1 where n = 2 - 37 for some positive integers i and j are used as f(z) in
our construction. Polynomials in R, are denoted in non-italic bold as a, with a; as the i-th coefficient.

For sampling, u <— X indicates that v is sampled uniformly at random from a set X, and v <— D indi-
cates that u is drawn according to a distribution D. The notation u < D! forms a vector u = (uy,...,up)
with each u; drawn independently from D. Especially, a <— D indicates that all coefficients of a polyno-
mial a is drawn according to a distribution . Sampling from the centered binomial distribution (CBD) vy,
involves 2k bits that are independent and uniformly random, summing the first & bits and the second £ bits
separately, then outputting their difference.

2.2 Public Key Encryption

Definition 2.1 (Public-Key Encryption). A public key encryption scheme PKE = (Gen, Enc, Dec) with
message space M, randomness space R, and ciphertext space C consists of the following three algorithms:

* Gen(1*): The key generation algorithm Gen is a randomized algorithm that takes a security parameter
1* as input and outputs a pair of public/secret keys (pk, sk).

* Enc(pk,m;r): The encryption algorithm Enc is a randomized algorithm that takes a public key pk,
a message m € M, and randomness r € R as input and outputs a ciphertext ¢ € C. We often write
Enc(pk, m) to denote the encryption algorithm without explicitly mentioning the randomness.

* Dec(sk, ¢): The decryption algorithm Dec is a deterministic algorithm that takes a secret key sk and a
ciphertext ¢ € C as input and outputs either a message m € M or a special symbol | ¢ M to indicate
that c is not a valid ciphertext.

Correctness. We say that PKE has a (worst-case) correctness error § [21] if

E | max Pr[Dec(sk, Enc(pk,m)) # m]| <4,

me

where the expectation is taken over (pk, sk) < Gen(1*) and the choice of the random oracles involved (if
any). We say that PKE has an average-case correctness error ¢§ relative to the distribution 154 over M if

E [Pr [Dec(sk, Enc(pk, m)) # m]] <,

where the expectation is taken over (pk, sk) <— Gen(1%), the choice of the random oracles involved (if any),
and m < Yuq.

Injectivity. Injectivity of PKE is defined via the following GAME INJ, which is shown in Figure 2| and
the relevant advantage of adversary A is

AdviN: (A) = Pr[INDpkg = 1].

Unlike the definition of injectivity in [7,121], we define the injectivity in a computationally-secure sense.
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GAME INJ

(pk, sk) < Gen(1*)

(m,r,m/,r") + A(pk)

¢ = Enc(pk, m;r)

¢ = Enc(pk,m’;r")

return [(m,r) # (m/,r") ANe =]

AN

Figure 2: GAME INJ for PKE

Spreadness. PKE is v-spread [21] if

' —logmax Pr [c = Enc(pk,m; >,
ey (1o B o= Encptmin)]) =5

where the minimum is taken over all key pairs that can be generated by Gen. This definition can be relaxed
by considering an expectation over the choice of (pk, sk). PKE is weakly v-spread [13] if

—logE P = Enc(pk, m; >
ook |, g By o= Enciph.mir] 2

where the expectation is over (pk, sk) + Gen(1%).

Randomness recoverability. PKE is defined as randomness recoverable (RR) if there is an algorithm
RRec such that for all (pk, sk) < Gen(1*), m € M, andr € R,

Pr |Vm' € Pre™(pk,c) : RRec(pk,m’,c) ¢ R
VEnc(pk, m';RRec(pk, m’, c)) # c|c + Enc(pk:,m;r)] =0,

where the probability is taken over ¢ <— Enc(pk, m;r) and Pre™(pk, c) defined as {m € M| Ir € R :
Enc(pk,m;r) = c}.

Message Recoverability. PKE is defined as message recoverable (MR) if an algorithm MRec exists such
that for all (pk, sk) < Gen(1*), m € M, andr € R,

Pr |Vr’ € Pre"(pk, c) :MRec(pk,r’,c) ¢ M

VEnc(pk,MRec(pk, ', c);r") # c|c + Enc(pk,m;r)] =0,

where the probability is calculated over ¢ < Enc(pk, m;r) and Pre" (pk, c) defined as {r € R|3m € M :
Enc(pk, m;r) = c}.

Rigidity. PKE is said to be rigid if, for all key pairs (pk, sk) < Gen(1*) and for any ciphertext ¢ € C, the
following holds:

If m" = Dec(sk, c) € M and r’ = RRec(pk,m’,c) € R, then Enc(pk,m’;r’) = c.
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Definition 2.2 (OW-CPA Security of PKE). Let PKE = (Gen, Enc, Dec) be a public-key encryption scheme
with message space M. Onewayness under chosen-plaintext attacks (OW-CPA) for message distribution
thr s defined via the GAME OW-CPA, which is shown in Figure[3] and the advantage function of adversary
Ais

AdvEKEPA(A) := Pr [OW-CPASe = 1] .

Definition 2.3 (IND-CPA Security of PKE). Let PKE = (Gen, Enc, Dec) be a public-key encryption scheme
with message space M. Indistinguishability under chosen-plaintext attacks (IND-CPA) is defined via the
GAME IND-CPA, as shown in Figure[3] and the advantage function of adversary A is

AdvNEPA(A) = |Pr [IND-CPASKe = 1] — - |.

1
2

Definition 2.4 (IND-CCA Security of PKE). Let PKE = (Gen, Enc, Dec) be a public-key encryption scheme
with message space M. Indistinguishability under chosen ciphertext attacks (IND-CCA) is defined via the
GAME IND-CCA, as shown in Figure 3] and the advantage function of adversary A is

AdviyE ““A(A) := |Pr [IND-CCAfge = 1] — ;‘ .
GAME OW-CPA GAME IND-CPA
1: (pk, sk) < Gen(1%) 1: (pk,sk) < Gen(1%)
2:m — Ypm 2: (mo,ml) — .Ao(pk‘)
3: ¢* < Enc(pk,m) 3: b+ {0,1}
4. m' + A(pk,c*) 4: ¢* < Enc(pk,myp)
5. return [m = m/] 5. b« Ai(pk, ")
6: return [b =10]
GAME IND-CCA Dec(c # ¢*)
1: (pk,sk) + Gen(1*) 1: return Dec(sk,c)
2: (mg,m1) + A (pk)
3: b« {0,1}
4: ¢* < Enc(pk,my)
50 b+ AP (pk, c*)
6: return [b="V']

Figure 3: GAMES OW-CPA, IND-CPA, and IND-CCA for PKE

2.3 Key Encapsulation Mechanism

Definition 2.5 (Key Encapsulation Mechanism). A key encapsulation mechanism KEM = (Gen, Encap,
Decap) with a key space KC consists of the following three algorithms:

* Gen(1*): The key generation algorithm Gen is a randomized algorithm that takes a security parameter
A as input and outputs a pair of public key and secret key, (pk, sk).
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* Encap(pk): The encapsulation algorithm Encap is a randomized algorithm that takes a public key pk
as input, and outputs a ciphertext ¢ and a key K € K.

* Decap(sk, c¢): The decryption algorithm Decap is a deterministic algorithm that takes a secret key sk
and ciphertext ¢ as input, and outputs either a key K € K or a special symbol L ¢ K to indicate that ¢
is not a valid ciphertext.

Correctness. We say that KEM has a correctness error § if
Pr[Decap(sk, c) # K|(c, K) + Encap(pk)] < 6,
where the probability is taken over the randomness in Encap and (pk, sk) < Gen(1?).

Definition 2.6 (IND-CCA Security of KEM). Let KEM = (Gen, Encap, Decap) be a key encapsulation
mechanism with a key space K. Indistinguishability under chosen-ciphertext attacks (IND-CCA) is defined
via the GAME IND-CCA, as shown in Figure [4] and the advantage function of adversary A is as follows:

1
Advidin A (A) == |Pr [IND-CCAfgy = 1] — 1.

2

Game IND-CCA Decap(c # ¢¥)

1: (pk,sk) < Gen(1?) 1: return Decap(sk,c)

2: (Ko, c*) < Encap(pk)

3 K1+ K

4: b+« {0,1}

5: b < APeP(pk, c*| K3)

6: return [b="b']

Figure 4: GAME IND-CCA for KEM

2.4 Complexity Assumptions

This section outlines complexity assumptions used in NTRU+{KEM, PKE}. Specifically, it introduces the
NTRU and RLWE problems. Unlike the RLWE problem used in ElGamal-type schemes [2]], RLWE here is
defined in the computational sense.

Definition 2.7 (The NTRU problem [20]). Let 1) be a distribution over R,. The NTRU problem NTRU,, , .
is to distinguish h = g(pf' + 1) ' € R, from u € R, where f', g < 1 and u <~ R,. The advantage of
adversary A in solving NTRU,, , . is defined as follows:

Adv) TRV (A) = Pr[A(h) = 1] — Pr[A(u) = 1].

Definition 2.8 (The RLWE problem [29]). Let v be a distribution over 1?,. The RLWE problem RLWE,, , .,
is to find s from (a,b = as + e) € R, x Ry, where a < R, s, e < 1. The advantage of an adversary A
in solving RLWE,, , . is defined as follows:

Advgf;lv’\{z,E(A) = Pr[A(a,b) = s].
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2.5 Proof Tools for QROM

Unlike the traditional ROM, the QROM must handle outputs for superpositioned inputs, making it chal-
lenging to directly apply ROM proof techniques like adaptive programming and security proofs using hash
tables [8]. This section introduces essential proof tools for QROM security analysis that circumvent these
constraints: the O2H lemma [37] and the extractable random oracle simulator [[15]].

2.5.1 One-way to Hiding

The O2H lemma, first introduced by D. Unruh [37]], serves as a important proof tool for the QROM. This
lemma quantifies the advantage of a quantum adversary in distinguishing between two scenarios: one that
uses random oracle outputs for specific inputs and another that uses truly random values. The fundamental
idea is that the probability of an adversary successfully measuring the specific input, for which the hash
function output has been replaced with a truly random value, bounds the advantage between these two
scenarios. In the ROM, the corresponding concept is the difference lemma proposed by Victor Shoup [35],
which similarly analyzes the differences between two games but is applicable in a classical context. This
subsection outlines the variations of the O2H lemma used in the security proofs presented in this work.

Lemma 2.9 (Adaptive O2H, Lemma 14 of [36]). Let H : {0,1}* — {0, 1}" be a random oracle. Consider
an oracle algorithm .4; that uses the final state of .4y and makes at most ¢ queries to H. Let C; be an oracle
algorithm that on input (j, B, x) does the following: run At!(z, B) until (just before) the j-th query, measure
the argument of the query in the computational basis, output the measurement outcome. (When .4 makes
less than j queries, C; outputs 1 ¢ {0,1}".) Let
Pl=Pr[t =1:H « ({0,1}* = {0,1}"),m « A} (), z < {0,1},
b A (a, H(z[lm))],
P3 =Pt =1:H « ({0,1}* = {0,1}"),m « A (), z « {0,1}",
B« {0,1}", 0 « AY(z, B)],
Pe:=Prlz=a2' Am=m':H« ({0,1}" = {0,1}"),m « AY(), z « {0,1}",
B+ {0,1}",j « {L, .o}, «'|[m’  C{'(j, B, z)].

Then | P} — P3| < 2q1v/Fe + g2 /2.

Lemma 2.10 (Classical O2H, Theorem 3 from the eprint version of [3]]). Let S C R be random. Let G and
F be random functions satisfying Vr ¢ S : G(r) = F(r). Let z be a random classical value (S, G, F, z may
have an arbitrary joint distribution). Let C be a quantum oracle algorithm with query depth gg, expecting
input z. Let D be the algorithm that, on input z, samples a uniform i from {1, ..., g }, runs C right before its
i-th query to F, measures all query input registers, and outputs the set 7' of measurement outcomes. Then

Pr[CS(2) = 1] = PrlCF(2) = 1]| < 26\/PrSNT # 0 : T + DF ()]

2.5.2 Extractable RO-Simulator S

The extractable random oracle simulator, proposed by J. Don et al. [15], is another important proof tool for
security proofs in QROM. It addresses challenges in retrieving hash inputs from superpositioned queries.
This random oracle simulator is indistinguishable from a real random oracle and can extract queried inputs
under specific conditions, thereby enabling security proofs in the QROM settings.
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Definition 2.11. For a function f : X x {0,1}" — T, define

L(f) = max|{y | f(z,y) = t}] and I"(f) := Jnax

{yl fz,y) = f, )}

Theorem 2.12 (Theorem 4.3 of [15]). The extractable RO-simulator S constructed above, with interfaces
S.RO and S.F, satisfies the following properties.

1. If S.F is unused, S is perfectly indistinguishable from the random oracle RO.

2. (a) Any two subsequent independent queries to S.RO commute. In particular, two subsequent
classical S.RO-queries with the same input x give identical responses.

(b) Any two subsequent independent queries to S.F commute. In particular, two subsequent classi-
cal S.E-queries with the same input ¢ give identical responses.

(c) Any two subsequent independent queries to S.E and S.RO 8/2I'( f)/2"-almost-commute.

3. (a) Any classical query S.RO(x) is idempotent.
(b) Any classical query S.FE(t) is idempotent.

4. (a) If # = S.E(t) and h = S.RO(%) are two subsequent classical queries then
Prif(#,h) #t A& # 0] < Pr(f(2,h) # t|& # 0] <2-27"T(f).

(b) If h = S.RO(z) and & = S.E(f(x, h)) are two subsequent classical queries such that no prior
query to S.E has been made, then

Priz=0]<2-27".

Furthermore, the total runtime of S, when implemented using the sparse representation of the compressed
oracle, is bounded as

Ts = O(qro - q - Time[f] + qro);
where gr and gro are the number of queries to S.F and S. RO, respectively.

Theorem 2.13 (Proposition 4.4. of [13]]). Let R’ C X x T be arelation. Consider a query algorithm A that
makes g queries to the S. RO interface of S but no query to S.E, outputting some t € T . For each i, let
Z; then be obtained by making an additional query to S.F on input ;. Then

Pr Ji: (#4,t;) € R <128 ¢*I'/2",
t<—AS~RO,§¢i<_s.E(ti)[ (&3, t:) | < qI'r/

where R C X x Y is the relation (z,y) € R < (z, f(z,y)) € R’ and

Iy = max {y € {0,1}"|(z,v) € R},
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3 ACWC, Transformation

We introduce our new ACWC transformation ACWC; by describing ACWC,[PKE, SOTP, G| for a hash
function G, as shown in Figure Let PKE' = ACWC,[PKE, SOTP, G] be the resulting encryption scheme.
By applying ACWC; to an underlying PKE, we prove that (1) PKE’ has a worst-case correctness error that
is essentially close to the average-case error of PKE, and (2) PKE' is tightly IND-CPA secure if PKE is
OW-CPA secure.

3.1 SOTP

Definition 3.1. A semi-generalized one-time pad SOTP = (Encode, Inv) with a message space X', a random
space U (with corresponding distribution ), and a code space ) (with corresponding distribution 1/y))
consists of the following two algorithms:

* Encode(x,u) : The encoding algorithm Encode is a deterministic algorithm that takes a message
x € X and random u € U as input, and outputs a code y € ).

* Inv(y,u) : The decoding algorithm Inv is a deterministic algorithm that takes a code y € ) and
random u € U as input, and outputs a message x € X U { L}.

It also follows three properties as follows:
1. Decoding: For all x € X, u € U, Inv(Encode(z, u),u) = .

2. Message-hiding: For all z € X, the random variable Encode(x,u), for u < 4y, has the same
distribution as 1)y .

3. Rigid: Forall uw € U, y € Y with Inv(y, u) #L, Encode(Inv(y, u),u) = y.

In contrast to the GOTP defined in [16], SOTP does not need to have an additional randomness-hiding
property, which requires that the output y = Encode(x, u) follows the distribution 1y and simultaneously
does not leak any information about the randomness u. The absence of such an additional property allows
us to design SOTP more flexibly and efficiently than GOTP. Instead, SOTP is required to be rigid, which
means that forall u € Y and y € ), x = Inv(y, u) #L implies that Encode(z, u) = y.

3.2 ACWC,

Let PKE = (Gen, Enc, Dec) be an underlying public key encryption scheme with message space M and
randomness space R, where a message M € M and randomness r € R are drawn from the distributions
tham and g, respectively. Similarly, let PKE' = (Gen’, Enc’, Dec’) be a transformed encryption scheme
with message space M’ and randomness space R'. Let SOTP = (Encode, Inv) with Encode : M’ x
U — Mand Inv : M xU — M’ be a semi-generalized one-time pad for distributions vy, and ) r4,
and let G : R — U be a hash function such that every output is independently v;-distributed. Then
PKE' = ACWC,[PKE, SOTP, G] is described in Figure 5]

Under the condition that Dec(sk, c) in Dec’ yields the same M as in Enc, the deterministic RRec and
Inv functions do not affect the correctness error of PKE’. Thus, the factor that determines the success or
failure of Dec’(sk, c) is the result of Dec(sk, c) in Dec’. This means that the correctness error of PKE is
straightforwardly transferred to that of PKE’, and eventually determined by how randomness » € R and
message M € M are sampled in PKE’. We see that r is drawn according to the distribution ¢z and M
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Gen’(17)
1: (pk,sk) := Gen(1%)
2: return (pk, sk)

Enc'(pk,m € M';R e R') Dec/(sk, c)
1: r + g using the randomness R 1: M := Dec(sk,c)
2: M := Encode(m, G(r)) 2: 7 := RRec(pk, M, c)
3: ¢:= Enc(pk, M;r) 3: m:= Inv(M,G(r)))
4: return c 4: ifr ¢ R orm =L, return L

5: return m

Figure 5: ACWC,[PKE,SOTP, G]

is an SOTP-encoded element in M. Because every output of G is independently 1/y,-distributed, we can
expect that the message-hiding property of SOTP makes M follow the distribution ¢ while hiding m.
Eventually, both M and r are chosen according to their respective initially-intended distributions.

However, since the choice of the random oracle G can affect the correctness error of PKE’, we need
to include this observation in the analysis of the correctness error. Theorem [3.2] shows that for all but a
negligible fraction of random oracles G, the worst-case correctness of PKE’ (transformed by ACWCy) is
close to the average-case correctness of PKE. This is the same idea as in ACWC, and the proof strategy of
Theorem@] is essentially the same as that of [L6] (Lemma 3.6 therein), except for slight modifications to
the message distribution.

Theorem 3.2 (Average-Case to Worst-Case Correctness error). Let PKE be RR and have a randomness
space R relative to the distribution ¢g. Let SOTP = (Encode, Inv) with SOTP : M’ x Y — M and
SOTP : M xU — M’ be a semi-generalized one-time pad (for distributions 1)y, ¥ 4), and let G : R — /4
be a random oracle. If PKE is d-average-case-correct, then PKE' := ACWC,[PKE, SOTP, G| is §’-worst-
case-correct for

5 = 8+ wml - (1+ v/ M = il /2).
where || YR = />, ¥r(r)%

Proof. With the expectation over the choice of G and (pk, sk) < Gen(1%), the worst-case correctness of
the PKE’ is

y=E [max Pr[Dec(sk, Enc'(pk, m)) # m]] = E[d (pk, sk)],

meM’

where &' (pk, sk) := E[max,,cp Pr[Dec(sk, Enc’(pk,m)) # m] is the expectation taken over the choice
of G, for a fixed key pair (pk, sk). For any fixed key pair and any positive real t € R™, we have

§ (pk, sk) = E| max Pr [Dec’(sk, Enc’(pk,m)) # m]]

me

<t+ fér [m%( Pr[Dec(sk, Enc’(pk, m)) # m] > t}
meM’

me

<t+ Pér [max/ Pr[Dec’(sk, Enc(pk, M;r)) # m] > t] , (D
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where M = Encode(m, G(r)). Note that the first inequality holds by Lemma 3.3
For any fixed key pair and any real ¢, let t(pk, sk) := u(pk, sk) + ||[Yr| - v/(c + In|M’|)/2, where
1(pk, sk) := Pryy . [Dec(sk, Enc(pk, M;r)) # M]. Then, we can use the helper Lemma [3.4]to argue that

Pr | max Pr[Dec’(sk, Enc(pk, M;7)) # m] > t(pk, sk)| < e . (2)
G |[meM' r
To this end, we define g(m,r,u) and B as g(m,r,u) = (Encode(m,u),r) and B = {(M,r) €
|Dec(sk, Enc(pk, M;r)) # M}, which will be used in Lemma 3.4} Note that Pry.y weyy, [g(m, r,u) €
B] = u(pk, sk) holds for all m € M’ by the message-hiding property of the SOTP. For all m € M/,
P B
Pt lglm.ru) € B

= Pr  [(Encode(m,u),r) € B]

TR u—Yy

—  Pr  [(M,r)e B]

7“<—1/J’R7M<—1/JM

= Pr [Dec(sk, Enc(pk, M;r) # M]

YR, My
= p(pk, sk).
Combining Equation (2)) with Equation (1)) and taking the expectation yields
§' <E |u(pk,sk) + [ - /T n[M)/2 + ]
=0+ lYrll - Vie+In|M])/2 4 €™
and setting ¢ := — In||¢)z|| yields the claim in the theorem. O

Lemma 3.3. Let X be a random variable and let f be a non-negative real-valued function with f(X) < 1.
Then,

E[f(X)] < t+Pr[f(X) > ]
for all positive real t € RT.

Proof. By using the law of total probability and by partitioning all possible values of x into conditions
satisfying either f(z) < t or f(x) > t, we can achieve the required inequality as follows:

= Zf z) Pr[X = z]

Z fl@ + > f = 1]

flx)<t f(z)>t
< Z tPriX Z f(z = ]

flz)<t (z)>t
<t+ Y f(x)Pr[X::r]

f@)=t
<t+ Z Pr[X = 2] =t + Pr[f(X) > 1]
The last equality can be checked by Zf(z)zt Pr[X =] = Pr[f(X) > t]. O

21



Lemma 3.4 (Adapting Lemma 3.7 from [[16]). Let g be a function, and B be some set such that

vm e M, Pr  [g(m,ru) € Bl <u 3)

TR u—Yy

for some p € [0,1]. Let G : R — U be a random function such that every output is independently 1/;,-

distributed. Define |[Yr|| = />, ¥ (r)%. Then, for all but an e¢ fraction of random functions G, we
have that Ym € M/,

Pr [g(m,r,G(r)) € B < p+[[¢r] - V(e +In|M'])/2

TR
for some positive ¢ € RT.

Proof. Let us fix a specific m € M/, and for each r € R, define p, := Pry.y,[g(m,7,u) € B]. By
the assumption of g in Equation , we know that ) ¢z (r)p, < p. For each r, define a random vari-
able X, whose value is determined as follows: G chooses a random u = G(r) and then checks whether
g(m,r,G(r)) € B; if it does, then we set X, = 1; otherwise we set it to zero. Because G is a random
function, the probability that X, = 1 is exactly p,.

The probability of Equation (4) for our particular m is the same as the sum ) 1% (7)X,, and we use
the Hoeffding bound to show that this value is not significantly larger than p. We define the random variable
Y, = ¢Yr(r)X,. Notice that Y, € [0,¢x(r)], and E>_Y,] = E[}., Y= (r)X,] = >, ¢¥r(r)p, < p. By
the Hoeffding bound, we have for all positive ¢,

Pr[ZY > u+t] <exp < 2 ) exp ( 21 ) 4)
T >~ - 9| = 92 |

" S Yr(r)? ¢l

By setting ¢ > ||| - /(¢ + In [M']) /2, for a fixed m, Equation (4) holds for all but an e~¢-|M’| ™" fraction
of random functions G. Applying the union bound yields the claim in the lemma. 0

Theorem 3.5 (OW-CPA of PKE ROM |ND-CPA of ACWCy[PKE,SOTP, G]). Let PKE be a public key

encryption scheme with RR and MR properties. For any adversary A against the IND-CPA security of
ACWC,[PKE, SOTP, G], making at most gg random oracle queries, there exists an adversary 53 against the
OW-CPA security of PKE and adversary C against the injectivity of PKE with

AdVK\ICQ/VCCZ?PKE,SOTP,G] (A) < AdvEREPA(B) + AdvPRe(C),

where the running time of B is about Time(.A) + O(qg).

Proof. We show that there exists an algorithm B (see Figure[7) which breaks the OW-CPA security of PKE
using an algorithm A = (Ap, .A;) that breaks the IND-CPA security of ACWCy[PKE,SOTP, G].

GAME Gy. Gy (see Figure @) is the original IND-CPA game with ACWC,[PKE,SOTP, G]. In Gy, A is
given the challenge ciphertext ¢* := Enc(pk, M*; r*) for some unknown message M* and randomness 7*.
By the definition of the IND-CPA game, we have

1
A IND-CPA
Pr(Gy = 1] - 5= Advacwe, pre soTp,g) (A)-
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Game Gy

G+~ (R—=U)

2: (pk,sk) < Gen(1*)

3: (mo, my) < AS(pk)

4: b+ {0,1}

501 — Yr

6: M* = Encode(my, G(1*))

7: ¢* < Enc(pk, M*;r*)

8: b < AS(pk,c*)

9: return [b="V']

Figure 6: GAME G of Theorems [3.5]and [3.6]
B(pk,c*) G(r)

1: Lo, Lr:=10 1 if I(r,u) € Lg
2: b+« {0,1} 2:  return u
3: (mg,m1) « AS§(pk) 3: else
4: b «— A§(pk,c*) 4 u+ Py
5: forr € £, do 55 Lg:=LcN{(r,u)}
6: M := MRec(pk,r,c*) 6: L,:=L.N{r}
7. ifMeM 7: return u
8 return M
9: return M < 1y

Figure 7: Adversary B for the proof of Theorem [3.5]

GAME G;. G is the same as Gy, except that we abort G; when A queries two distinct 7] and 75 to G, such
that MRec(pk, r], ¢*) and MRec(pk, 5, c¢*) € M. This leads to breaking the injectivity of the PKE. Thus,
we have

[Pr[G{ = 1] — Pr[Gg' = 1]| < AdvRE(C).

GAME G3. Let QUERY be an event that A queries G on r*. (G5 is the same as (G1, except that we abort G
in the QUERY event. In this case, we have

|Pr[G4' = 1] — Pr[G{' = 1]| < Pr[QUERY].

Unless QUERY occurs, G(7*) is a uniformly random value that is independent of .A’s view. In this case,
M* := Encode(my, G(r*)) does not leak any information about m;, by the message-hiding property of the
SOTP, meaning that Pr[G3' = 1] = 1/2. By contrast, if QUERY occurs, B (defined in Figure can find
r* € L, such that ¢* := Enc(pk, M*;r*), using the algorithm MRec. Indeed, for each query r to G, B
checks whether MRec(pk, r, ¢*) € M. In the QUERY event, there exists M* := MRec(pk,r*,¢*) € M
which can be the solution to its challenge ciphertext c*. It follows that

Pr[QUERY] < AdvOXE“PA(B),

which concludes the proof. O
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Theorem 3.6 (OW-CPA of PKE T2 IND-CPA of ACWC,[PKE, SOTP, G]). Let PKE be a public key

encryption scheme with RR and MR properties. For any quantum adversary A against the IND-CPA security
of ACWC,[PKE,SOTP, G] with a query depth at most gg, there exists a quantum adversary 3 against the
OW-CPA security of PKE and adversary C against the injectivity of PKE with with

Advicwes e soTe g (A) < 246 \/AdVngE'CPA(B) + Advpie(C),
and the running time of B is about that of .A.

Proof. To prove this theorem, we use a sequence of games G to G'7 defined in Figures [6] [§] and [0] and
Lemma[2.10} Before applying Lemma[2.10] we change G to G. Subsequently, we apply Lemma [2.10]to
G2 and (3. A detailed explanation of the security proof is provided in the following.

GAME G. Gy (see Figure o) is the original IND-CPA game with ACWC,[PKE, SOTP, G|. By definition,
we have

1
A IND-CPA
Pr[Gy = 1] - 5| = Advacwe,[PkesoTP.gl (A).

GAME G. We define G| by moving part of G inside an algorithm C®. In addition, we query u := G(r)
before algorithm C® runs adversary .A. As the changes are only conceptual, we have

Pr[Gyl = 1] = Pr[Gt = 1].

GAME G3. We change the way G is defined in GG3. Rather than choosing G uniformly, we choose F and
u uniformly and then set G := F(r := u). Here, G = F(r := u) is the same function as F, except that it
returns u on input 7. Because the distributions of G and u remain unchanged, we have

Pr[Git = 1] = Pr[Gy! = 1].

Games G1-G5 CG(Tv u)
1: G+ (R—=U) Gy 1. (pk,sk) < Gen(1*)
2271+ R 2: (mo,ml) — Ag(pk)
3 u = G(r) G133 b+ {0,1} 11 G1-Gy
4 F « (R — U) 1 G2'G5 4: M = Encode(mb,u) 1/ Gl—G4
50w Yy 1Ga-Gs 50 M + g 1 Gs
6: G:=F(r :=u) 1 G2-Gs 6. ¢* < Enc(pk, M;7)
7: w + CO(r,u) 1Gi-Ga 7. b < AS(pk, c*)
8: w < CF(r,u) I'Gs 8 return [b=1V]
9: T < DF(r,u) Il G4-G'5 DF (r,u)
10: return w 11 G1-G3 17“_{17 Lgc)
11: return 7 € T I Ga-Gs 2: Run CF(r,u) till i-th query
3: T < measure F-query
4: return 7T’

Figure 8: GAMES G1-G' for the proof of Theorem [3.6]
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Game G4-G7 E(pk,c*)
1: (pk,sk) < Gen(1?*) i+ {1,---,qc}
2T YR 2: Run until ¢-th F-query:
30 M <+ Py 3. AF(pk)
4: ¢* «+ Enc(pk, M;r) 4. A5 (pk,c*)
5: T « E(pk, c*) Il Gg 5. T <—measure F-query
6: M' < B(pk,c") I G7 6 return T'
7: return r € T 1Ge  B(pk,c*)
8: return [M = M| I1Gr | £ (pk, *)
2: forr € T do
3. if M = MRec(pk,r,c*) € M
4 return M
5: return M < g

Figure 9: GAMES G¢-G7 for the proof of Theorem [3.6]

GAME G3. We define G'3 by providing function F to algorithm C instead of G. By applying Lemma [2.10
with C, S := {r}, and 2z := (r, u), we obtain the following:

‘Pr[Gﬁ4 = 1] — Pr[Gg' = 1]| < 2¢6y/Pr[Gy = 1].

In addition, since the uniformly random value w is only used in the Encode(my, u), by the message-hiding
property of the SOTP, M is independent of m;. Thus, b = b’ with a probability of 1/2. Therefore,

1

5

GAME G4 and G5. We define G4 according to Lemma [2.10] In addition, we define G5 by changing the
way M is calculated. Instead of computing M = Encode(my, u), we sample M < 1. By contrast, in
Gy, since u is sampled from v, and used only for computing Encode(my, u), the message-hiding property
of SOTP shows that M = Encode(my,, u) follows the distribution ¢ 5. Therefore,

PrGyt = 1] =

Pr[Gyl = 1] = Pr[G& = 1].

GAME Gg. We define G by rearranging G's, as shown in Figure[9] As the changes are only conceptual, we
have

Pr[Gg = 1] = Pr[Gg = 1].

GAME G7. Gy is defined by Algorithm B, as shown in Figure 0] moving from Gg. G7 is the same as G,
except for the case in which there are two distinct 7,7’ € T such that MRec(pk, r, ¢*), MRec(pk, ', c*) €
M. If this occurs, the injectivity of PKE is broken. Thus, we have

|Pr[Ggt = 1] — Pr[Gt = 1]| < AdviRE(C).

We can observe that in G7, B wins if there exists » € T such that m* := MRec(pk, r,c*) € M, as the
solution of its challenge ciphertext c*. Therefore, we have

AdvXECPA(B) = Pr[G = 1].
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Combining all (in)equalities and bounds, we have

AdVK\ICQ/VCcZA[\PKE,SOTP,G] (A) < 2q6 \/AdVg&VE'CPA(B) + AdviRe(C),
which concludes the proof. O

Theorem 3.7. If PKE is (weakly) v-spread, SOTP has the message hiding property, and G is modeled as a
random oracle, PKE' = ACWC,[PKE, SOTP, G] is (weakly) /-spread with

7' =7 —logy (IM] - Ar}lgﬁwM(M)),

where M is the message space of PKE and ¢ (M) is the probability that M € M is sampled from the
distribution 1 x4.

Proof. For a fixed (pk, sk) and m, we consider the probability Prr. »/ glc = Enc'(pk,m; R)| for any
ciphertext c. Since G is modeled as a random oracle, the probability is taken over the random choice of G.
Given that r is sampled as r < 1 using the randomness R < R/, the probability can be rewritten as

P = Enc'(pk, m;
R, o= Enc/(ph,m: R)

= Pr [c= Enc(pk,Encode(m,G(r));r)].

T(—wR,G

By the law of total probability on possible < ¥, we have:

Pr [e¢ = Enc(pk, Encode(m, G(r));7)]

7’<—¢R,G
= Z Pr[c = Enc(pk, Encode(m, G(r;)); )] Pr [r=r.
rER ¢ revR

Since G(r;) is ¢y4-distributed, the message hiding property of SOTP ensures that the output M/ = Encode(m, G(r;))
is 1 p¢-distributed over the random choice of G:

Z Pér[c = Enc(pk, Encode(m, G(r;));7i)] Pr [r=r]

riER TEYR
= Z Pr [c = Enc(pk,Encode(m,u);r;)] Pr [r=r]
u—hy rYR
ri€ER
= Pr [c=Enc(pk,M;r;)] Pr |[r=r;.
r,€R M<_¢M[ (p )] ”_7?7%[ ]

For the ease of analysis, we define an indicator function I(pk, M, r, c) = [¢ == Enc(pk, M;r)]. Then,

ri€R Mepm YR
- M%:M T;I(Pk, M;,ri,c) rflin[T = 7] ME@M[M = M)
= M%:M rfq/l)‘R[c = Enc(pk, Mj;r)] MEzrﬂM [M = Mj).
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Considering Pr,. . [c = Enc(pk, Mj;r)] as the ~-spreadness of PKE on any message M, the +'-
spreadness of PKE’ is upper-bounded as follows:

Pr [c = Enc'(pk,m; R)]

R+R',G
= Pr [c=Enc(pk,M;;r)]- Pr |M=M;
M;M N_W[ (p 537)] M<—wM[ ]

) I
< IM[-277 - max Ya(M).

By averaging over (pk, sk), the weak ~/-spreadness of PKE' is also obtained. O

4 IND-CCA Secure KEM from ACWC,

4.1 FO Transform with Re-encryption

One can apply the Fujisaki-Okamoto transformation FO&EM to the IND-CPA secure PKE’, as shown in
Figure [5] to obtain an IND-CCA secure KEM. Figure |10/ shows the resultant KEM := FOygp [PKE', H] =
(Gen, Encap, Decap), where H is a hash function (modeled as a random oracle). Regarding the correctness
error of KEM, KEM preserves the worst-case correctness error of PKE’, as Decap works correctly as long as
Dec’ is performed correctly. Regarding the IND-CCA security of KEM, we can use the previous results [21]]
and [15]], which are stated in Theorems[4.T|and[4.2] respectively. By combining these results with Theorems
and we can achieve the IND-CCA security of KEM in the classical/quantum random oracle model.
In the case of the quantum random oracle model (QROM), we need to further use the fact that IND-CPA
generically implies OW-CPA.

Encap(pk) Decap(sk, )
1. m <+ M 1: m' := Dec/(sk, c)
2: (R,K) :=H(m) - M’ = Dec(sk, c)
3: ¢:= End'(pk,m; R) -1’ = RRec(pk, M', c)
- 1 < 1 using the randomness R -m/ = Inv(M',G(1"))
- M := Encode(m, G(r)) -if ' ¢ R orm/ =1, return |
- ¢ := Enc(pk, M;r) - return m’
4: return (K, c) 2: (R, K') :==H(m')
3. if m’ =1 or ¢ # Enc/(pk,m'; R'), return L
4: else, return K’

Figure 10: KEM = FOpgy [PKE’, H]

Theorem 4.1 (IND-CPA of PKE' 2 IND-CCA of KEM [21]). Let PKE’ be a public key encryption
scheme with a message space M. Let PKE' has (worst-case) correctness error § and is (weakly) ~-spread.
For any adversary .A making at most gp decapsulation and gy hash queries, against the IND-CCA security
of KEM, there exists an adversary B against the IND-CPA security of PKE’ with

AdvINDCCA () < 2(AdVIND-CPA(B) ‘;1\7;4’) 027 + qud,

where the running time of B is about that of \A.
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Theorem 4.2 (OW-CPA of PKE' = QROM IND-CCA of KEM [13]). Let PKE' have (worst-case) correctness

error 0 and be (weakly) y-spread. For any quantum adversary A, making at most ¢p decapsulation and gy

(quantum) hash queries against the IND-CCA security of KEM, there exists a quantum adversary B against
the OW-CPA security of PKE’ with

Adviim- A (A) <2¢1/ AdvRe"A (B) + 24¢°V5 + 249, /qqp - 2774,

where ¢ := 2(qy + ¢p) and Time(B) ~ Time(A) + O(gy - gp - Time(Enc) + ¢?).

4.2 FO-Equivalent Transform Without Re-encryption

The aforementioned FO&EM requires the Decap algorithm to perform re-encryption to check if ciphertext
c is well-formed. Using m/ as the result of Dec’(sk, c), a new randomness R’ is obtained from H(m/), and
Enc’(pk, m’; R") is computed and compared with the (decrypted) ciphertext c. Even if m’ is the same as
m used in Encap, it does not guarantee that Enc’(pk, m’; R') = ¢ without computing R’ and performing
re-encryption. In other words, there could exist many other ciphertexts {c;} (including ¢ as one of them),
all of which are decrypted into the same 7’ but generated with distinct randomness {R’}. In FOygy (and
other FO transformations), there is still no way to find the same ¢ (honestly) generated in Encap other than
by comparing Enc’(pk, m’; R') and c. In the context of chosen-ciphertext attacks (using the inequality such
as ¢ # Enc'(pk, m’; R')), it is well known that decapsulation queries using {c; } can leak information on sk,
particularly in lattice-based encryption schemes.

However, we demonstrate that FOjcgy based on ACWCy can eliminate the need for ciphertext compar-
ison ¢ = Enc/(pk,m’; R") in Decap, and instead replace it with a simpler and more efficient comparison
r’ = r". To do this, we first change Decap of Figure[10|into that of Figure[11] which are conceptually identi-
cal to each other. Rather, the change has the effect of preventing reaction attacks that can occur by returning
dlstlnct output errors of Decap. Next, we suggest the new FOjitgy conversion based on ACWCs, denoted as
FOKEM, as shown in Figure [12] In FOxgp, 7/ and r’ are values generated during the execution of Decap,
where 7/ is the output of RRec(pk, M’, ¢) and r” is computed from the randomness R’ of H(m'). The only
change compared to FO&EM in Figure @ is the boxed area, while the remaining parts remain the same. By
proving that the two conditions 7' ¢ R and ¢ = Enc’(pk,m’; R') are equivalent to the equality ' = r”
(where 7 < 1 with the randomness R'), we can show that both FOjcgy, and FOygy work identically and
thus achieve the same level of IND-CCA security.

Decap(sk, ¢) Decap(sk, ¢)
1: = Dec(sk, c) = Dec(sk, c)
2: ' = RRec(pk, M', ¢) r" = RRec(pk, M, ¢)
3 = Inv(M’', G(r")) = Inv(M’', G(r"))
& (R, K') = H(m) (R, K") = H(m')
5. ifm’ =L or|r" ¢ Rorc# Encd(pk,m'; R) ’r” < 1) with the randomness R’
6
7
8

AN A

return | - ifm’ =1 or

6
 else ) 7.  return L
return KX 3 else
9

return K’

Figure 11: Modified KEM = FOgy [PKE', H] Figure 12: KEM = ﬁﬁ(‘EM[PKE’, H]
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Lemma 4.3. Assume that the output of Dec in PKE always belongs to M, PKE is injective in the injectivity
game of Figure[2] and PKE and SOTP are rigid. Then, 7’ € R and ¢ = Enc’(pk, /; R') in FOitgy, holds if
and only if v’ = 7" in FOKEM holds.

Proof. Assume that m’ #1, 7' € R, and ¢ = Enc'(pk,m/; R') holds in the Decap of FOgy. By the
definition of Enc/, we have ¢ = Enc(pk, Encode(m’, G(r"));r"), where 7"’ < 1) is sampled using the
randomness R’. Furthermore, since M’ = Dec(sk,c¢) € M and ' = RRec(pk, M’,¢) € R, the rigidity
of the PKE leads to the equality ¢ = Enc(pk, M';7"). Because PKE is injective, these two equations with
respect to ¢ imply that ' = r”

Conversely, assume that m’ #1 and 7" = r” holds for a ciphertext ¢ in the Decap of FOKEM By
the rigidity of the SOTP, m' = Inv(M’,G(r')) #L implies M’ = Encode(m’,G(r")), thus M’ =
Encode(m’, G(r")). Also, since r” < g is sampled using the randomness R’ and ' = r”, it follows
that v’ € R. Since M’ = Dec(sk,c) € M and ' = RRec(pk, M’',c) € R, by the rigidity of the PKE,
¢ = Enc(pk, Dec(sk, ¢); ") = Enc(pk, Encode(m’, G(r")); ") = Enc’(pk, m’; R') holds. O

S IND-CCA Secure PKE from ACWC,

FOp, FO
OW-CPA ThAé]VYRC;M) IND-CPA @F;E(E)M) IND-CCA PKEIND-CCA
PKE — E — KE L.53 PKE
CO?;’:gzlg;SC?reror =~ Corr‘évc(glséégaf;or w/ re-encryption w/o re-encryption
GenNTRU[y7] CPA-NTRU+ CCA-NTRU-+PKE NTRU+PKE
— : tight security reduction - —» : non-tight security reduction <= tight security equivalence

Figure 13: Overview of security reductions for PKE

5.1 FO Transform with Re-encryption

If the message space M’ of an IND-CPA secure PKE' is sufficiently large, we can apply the another well-
known Fujisaki-Okamoto transformation FOpyg [17] to the IND-CPA secure PKE’ to obtain an IND-CCA
secure PKE”. For the simplicity’s sake, let M’ = {0, 1}“» T for some integers £,, and £,.. The idea behind
the FOpyg is to concatenate an arbitrary message mm € {0, 1} and a random bit-string € {0, 1}* and
set a new message m = ml|r € {0, 1}6m+€r for the IND-CPA secure PKE’. During the decryption of
PKE" the message m is recovered by taking [m],, , the most significant bits of length ¢,,, from /. Figure
shows the resultant IND-CCA secure PKE” := FO@yg[PKE’, H] = (Gen” Enc”, Dec”), where H is a
hash function (modeled as a random oracle).

As in the previous KEM, PKE” preserves the worst-case correctness error of PKE’, since Dec” works
correctly as long as Dec’ is performed correctly. Regarding the IND-CCA security of PKE”, Figureshows
the overview of security reductions for PKE. Based on the IND-CPA security of PKE’, we prove that PKE”
is IND-CCA-secure in the random oracle model by adapting and modifying the previous security proof of
[17]]. Next, we prove that PKE” is also IND-CCA-secure in the quantum random oracle model by using the
adaptive O2H lemma [36] and the extractable RO (random oracle)-simulator [15]. Later, as in ﬁKEM, an
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Enc” (pk,m € {0,1}"™) Dec”(sk, c)

107 {0,1}" 11 7/ = Dec'(sk, ¢)

2 m=mlr e {0,1} - M’ = Dec(sk, c)

3: R:=H(m) - r" = RRec(pk, M’ ¢)

4: ¢:= End'(pk,m; R) -m/ = Inv(M', G(r"))
- r + 1 using the randomness R -if ' ¢ Rorm’ =L, return L
- M := Encode(m, G(r)) - return m/
- ¢ := Enc(pk, M; 1) . R :=H(m)

2

5. return c 3. ifm' =Lore 75 Enc'(pk, ﬁl/; R,)
4:  return L
5: else

6

return [m/],

Figure 14: FOpyg[PKE', H] = (Gen”, Enc”, Dec”)

analogous transform %éKE for public-key encryption will convert PKE” into more efficient PKE scheme
that does not need to do re-encryption during decryption.

5.2 Security Proof in the ROM

Theorem 5.1 (IND-CPA of PKE' *¥ IND-CCA of PKE”). Let PKE’ be a public-key encryption scheme

with worst-case correctness error ¢ and weakly y-spreadness. For any classical adversary A against the IND-
CCA security of PKE”, making at most gp queries to the decryption oracle Dec” and at most gy queries to
H: M — R, there exists a classical adversary B against the IND-CPA security of PKE’ such that

Advpies A (A) < 2 AdvRiESPAB) + (an +ap) - (277 +0) + g 27"

Proof. For the security proof, we analyze hybrid games G to G's, defined in Figures[I5|and[I6] with a fixed
key pair (pk, sk). To do this, we define dg;, := maxy,ep Pryy,[Dec’ (sk, Enc'(pk, m; 7)) # m] as the
maximum probability of a decryption error and s, := — log max,,e pm,cec Prryy[c = Enc’(pk, m; 7)) as
the negative logarithm of the maximum probability of any ciphertext for the fixed key pair (pk, sk), ensuring
E[6s] < 6 and E[277s#] < 277, with expectations taken over (pk, sk) < Gen’(1%). A detailed explanation
of the security proof is provided below.

GAME Gy. G is the IND-CCA game against PKE” with a fixed key pair (pk, sk) (see Figure . Here, we
define the advantage of an adversary A in the IND-CCA game against PKE” for a fixed key pair (pk, sk) as:

1

AV () = [PrlGid = 1] - 5.

GAME G1. G is defined by modifying the Dec” oracle, as shown in Figure In G4, the Dec” ora-
cle is altered to first compute 7/ = Dec(sk, c) and return []y,, if there exists (7, 7) € Ly such that
Enc(pk,m;7) = c and . = m’. The Dec” oracle in Gy differs from that in Gy if H(1) has not been
queried, which occurs with probability -277s%. By the union bound:

[PrGf = 1]~ Pr{Gf = 1]| < (gu +a0) - 27+,
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GAMES Go-G H(m)
1: (pk, sk) < Gen”(1%) 1: if 37 such that (m, 7) € Ly
2: (mo,my) < AE’DeC (pk) 2:  return 7
3: b+ {0,1} 3T+ R
4 7+ {0,1}" 4 Ly = Ly U{(m,7)}
50 1 = my||r € {0, 1}t 5: return 7
6: 7= H(m) . .
7. ¢* = Enc'(pk,m;7) Dec”(c # ¢*). en
8: b «— AlH’DeCN(pk,c*) L. mCT Dec’(sk, c)
9: return [b= V] 2: ifm' = Lor
¢ # Enc (pk, m'; (')
GAME G3 3:  return L
I: (pk,sk) < Gen”(1%) 4: else, return [1n/],
2 (mo, 1) + Ay (ph) ot o
3 (ro,71) < {0,1} x {0,1}" Dec’(c # ) /IG1-Gs
4 b+« {0,1} 1: m’ = Dec/(sk, c)
50y = my||ry € {0, 1}”:£m+@r 2: if 3(m, 7) € Ly such that
6: 7 = H(riw) ¢ = End'(pk,m; 7) 1G1-Gi3
7. ¢* := Enc(pk, my; ) and m = fnj 11G1
g b« AMDPe” (pk, c) return [m] 0
9. return 1[[b =] ’ 4: else, return L

Figure 15: GAMES Gy-G3 for the proof of Theorem|[5.1]

GAME G9. Gs is defined by modifying the Dec” oracle, as shown in Figure In G2, Dec” no longer
checks whether . = 1/, where m’ = Dec/(sk, c). Instead, it returns 7 directly if there exists (1, 7) € Ly
such that Enc’(pk, m;7) = c. Since the Dec” oracle in G is identical to that of G if there are no hash
queries to H that lead to a correctness error, by the union bound, the following holds:

|Pr[G' = 1] — Pr[G5' = 1]| < (qn + qb) - Ssk-

Note that the Dec” oracle in G5 no longer requires the secret key.
GAME G'3. G3 is defined by replacing /m by 1y, as shown in Figure[15] Since this change is only conceptual,
the following holds:

Pr[Gy' = 1] = Pr[G4' = 1].

GAME Gy4. Gy is defined by moving part of the game into an adversary CH = (C(';', Ct), defined in Figure
[I6 Since the change is only conceptual, the following holds:
Pr[G4' = 1] = Pr[G = 1].

GAME G5. G is defined by changing how #* is chosen. In Gj, instead of generating #* using H, 7 is
chosen randomly from R, which will not be noticed by A as long as .4 does not query 7 to H. Let QUERY
be an event that A queries H on 7. Due to the difference lemma [35]], the following holds:

|Pr[Gy' = 1] — Pr[Gg' = 1]| < Pr[QUERY].
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GAMES Gy4-G5 Dec”(c # ¢*)

1: (pk,sk) «+ Gen”(1%) 1: if 3(m, 7) € Ly such that

2: (rhg, m1) + CH(pk) c = End(pk,m;T)

3: b+ {0,1} 2:  return ],

4: 7 = H(my) lIG4  3: else, return L

5: 7+ R 1G5

6: c* := Enc(pk, my; 7) Ch (pk)

7 Y CP(pk, ') 12 (mo,my) + AP (pk)

8: return [[b = b]] 2 (7“0,7’1) « {0’1}&- % {071}37»
H(’rﬁ) 3: return (’rﬁo,’rﬁl) = (moHT‘o,mlHTl)

1: if 37 such that (m, 7) € Ly

2:  return 7 c{" (pk)

3: else, 7 < R oc”! .

4 Ly :=LyU {(Th, f)} 11 b« "Alll—|7D (pk,c*)

) - 2: return b

5: return r

Figure 16: GAMES G4-G5 of Theorem [5.1]

Also, since the adversary C in G5 is playing the original IND-CPA game against PKE', the following holds
1 )
Pr[Ge' = 1] — 5| = AdviEEA (©).

Now, construct an adversary D = (DZ){, Di") in Figure |17 that solves the IND-CPA game with PKE’
when the event QUERY occurs. Since r;_p is completely hidden from the adversary A, the probability that
A ever queries 1 _j, = (m1_||r1_p) to H can be bounded to gy - 2. Therefore, the following holds:

Pr[QUERY] < Advy & i (D) +qn - 27"

Combining the intermediate results and folding C and D into one single adversary B against IND-CPA
with PKE’, and then taking the expectation over (pk,sk) < Gen’(1%) yields the required bound of the

theorem. ]
DY (pk) H(m)
12 Ly, Ly, =0 . if 37 such that (m, 7) € Ly

: return 7
TR

1
2: (1o, my) < C¢ (pk) 2
3
4 Ly =L U{(m,7)}
5
6

3: return (mg,m1)
DY (pk, c*)
1: CH(pk,c*)

2: if g € L, return b’ =
3: else, return b’ = 1

: L = Ly U{m}
: return r

Figure 17: The adversary D in Theorem[5.1]
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5.3 Security Proof in the QROM

Theorem 5.2 (IND-CPA of PKE’ LM IND-CCA of PKE” ). Let PKE’ be a public-key encryption scheme
with a worst-case correctness error ¢ that satisfies weak y-spreadness. For any quantum adversary A against
the IND-CCA security of PKE”, making at most gp queries to the decryption oracle Dec” and at most gy
queries to H : M — R, there exist a quantum adversary B3 against the IND-CPA security of PKE’ such that

AVGEA(A) < (200 + 200 + 1)\ 2ANARB) + ¢ + (g + o) - 272

where ¢ = 128(qn + ¢p)*0 + gp - (gn + gp) - 207H)/2 4 gp - 270+,

The proof strategy for Theorem [5.2] closely follows Theorem 6.1 in [15], with a key distinction in the
application of the O2H lemma. While [15] used Lemma [2.10| (Theorem 3 of [3]) to prove the IND-CCA
security of the KEM, an adaptive version of the O2H lemma, as outlined in Lemma/|2.9} is used to prove the
IND-CCA security of PKE”.

Proof. The security proof begins by analyzing hybrid games with a fixed key pair (pk, sk). To do this,
we define ds; := maxmem Prryy,[Dec’ (sk, Enc’(pk,m;r)) # m] as the maximum probability of a
decryption error and v := — log maxem cec Prreyylc = Enc'(pk,m;r)] as the negative logarithm
of the maximum probability of any ciphertext for the fixed key pair (pk, sk), ensuring E[ds;] < 6 and
R[277s#] < 277, with expectations taken over (pk, sk) <— Gen’(1*). A detailed explanation of the security
proof is provided below.

GAME Gjy. Gy is the original IND-CCA game against PKE” with the fixed key pair (pk, sk). Here, define
the advantage of adversary A in the IND-CCA game against PKE” for a fixed key pair (pk, sk) as:

1
ARSSAA) = [PriGit = 1] 5|

GAME G. G is defined by moving parts of the game into a set of algorithms C" = (C('f, Ct), as shown in
Figure[I8] Since this change is only conceptual, it holds that:

Pr[Gyl = 1] = Pr[Gt = 1].

GAMES G2 AND (G3. G5 and (G5 are defined by applying Lemmato G1 and CM (see Figure|[18). Note
that G5 and G3 generate 7 < R instead of 7 = H(m). As a result, it holds that:

Pr[Gft = 1] — Pr[Gs' = 1]| <2 (qn + ap)V/Pr[Gs = 1] + (qn + gp) - 27 /*T2.

Combining the analyses of GGy to G, the following inequality holds:

) 1
AR = [Prici = 1) 3 - !

mwﬁ:u—w

< |Pr[Gf = 1] — Pr[Gy' = 1]| +

1
mmf:n-ﬁ

mmé:u—l. )

<2 (gq+qo)VPr[Gs = 1] + (qgn + qp) - 27/*2 + .
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GAME G Dec”(c # ¢*)

L H« (M—=TR) 1: m' = Dec/(sk,c)

2: (pk,sk) < Gen(1*) 2: 7 = H(m')

3 (mo,mq) — AP (p) 3. if ¢ # End (pk, ;)

4: b+« {0,1} 4:  return L

5. r <« {0, 1}4* 5: else, return /],

6: 1 = my||r € {0,1}"m Tl

7 7 = H(m) ')

8: c* = Enc'(pk,m;7) 1: (pk,sk) < Gen(1?)

9. b AMP<" (pk, c*) 2 (mg,mq) — AP (pk)
10: return [b = b'] 3. b« {0,1}

4: return my

GAMES G1-G3

I: He (M = R) i (r,7)

2 my, <+ CH() 1: ¢* < End'(pk,m;T)
307+ {0,137 2: b AI{"DEC” (pk, c*)

4 mo=my||r 3: return b’

5. 7 := H(im) el

6: T+ R IGo-G3  DH(r,7)

7: b/%C{'(T,’F) 1G1-Go 1: ’i(—{l,"' aQH}

8 m « DH(r,7) IIG3 2: Run CH(r,7) till i-th H-query
9: return [b =] I1G1-G2 3. 1/ < measure i-th H-query
10: return [y, = m'] IG3 4. return m/

Figure 18: GAMES G(-G?3 for the proof of Theorem [5.2]

GAME Ga1. G is defined by modifying G2, moving parts of the set of algorithms C H — (C(')", C{") into
the game, as shown in Figure[I9] Since this change is only conceptual, it holds that:

Pr[Gy' = 1] = Pr[GyY, = 1].

GAME G2.9. G2 4 is defined by modifying the generation of m, as shown in Figure@} Since this change is
only conceptual, the following holds:

Pr[G3Y, = 1] = Pr[G35ly = 1].

1" 11
GAME Gg 3. G 3 is defined by moving parts of the game into a set of algorithms £ H,Dec” _ (5(')—| ,Dec , Ef' ,Dec ),

as shown in Figure [I9] Since this change is conceptual, it holds that:
Pr[G5Y, = 1] = Pr[Ggy = 1].

GAME Go4. Ga4 is defined by replacing the random oracle H with the extractable RO-simulator S for
the relation R; := {(z,vy) | f(z,y) = t}, where f(x,y) = Enc’(pk,z;y) from Theorem [2.12] as shown
in Figure [I9] Furthermore, at the end of the game, the extractor interface S.E is invoked to compute
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GAMES G2.1-G2.2 DEC”(C 7& C*)

I: He (M —=R) 1: m’ = Dec/(sk, c) 11G2.1-Ga.6
2: (pk, sk) < Gen’(l’\y/ 2. 7 = H(m') 1G2.1-G26
3: (mo, 'ml) — AI(;!,Dec (pk‘) 3: ifc ?é Enc’(pk, fn’; f/) 1G2.1-Go 5
4 (ro,m1) + {0,1} x {0,1} /Goy 4  return L NG21-Ga.5
5: b« {0,1} 5: else, return [m/],,, /1G9 1-Go s
6: r <+ {0,1}" Gy, 6 1/ < S.E(c) IG2.5-Gan
7: = myl|r //Geq, 7 if M/ =1, return L 1G26-Ga
8: 1M = my|ry //Gso 8 else, return [1i], /1Go.6-Go7
9: 7+ R ”

10: ¢* « Enc/(pk,m;7) Egl’Dec (pk)

e b AP (/pk,C*) I (mo,ma) + AYP (pk)

12: return [b = V'] 2 (ro,r1)  {0,1}% x {0,1}%

GAMES Go.3-Go 7 3: return (m()?ml) = (m()H’f'(),mlHT'l)

H « (M — R) //G2_3

1: H,Dec”
: & k,c*)
2: H=S8.RO G2.4-Ga7 l(pHDeCu
/ )

3. (pk,Sk’) y Gen/(l)\) 1: b« Al/ (pk,c*)

4 (g, 1) <_5(I]-I,Dec (pk) 2: return b

5: b« {0,1}

6: T+ R

7. c* < Enc/(pk, mp; 7)

8: b« ENMP (pk, )

9: return [b=10]

10: while ¢ € I do 1G24

11: m; < SE(Q) 1G24

Figure 19: GAMES G.1-G2 7 for the proof of Theorem[5.2]

m; = S.E(c;) for each ¢; that A queried to Dec” during its run. According to the first statement of
Theorem [2.12]

Pr[Gyly = 1] = Pr[GsY, = 1].
Furthermore, applying Theorem[2.13|for R’ := {(m, c) : Dec'(sk, ¢) # m}, the event
PT .= Vi : 1n; = 1, == Dec'(sk, ¢;) V 1y = (]
holds except with probability €, 5, := 128(qn + a0)*Tr/|R| = 128(qH + qp)*dsk. Thus,
Pr[G3l, = 1] — Pr[GsY, = 1 A PT]| <&l

GAME Gy5. Goj is defined by moving each query S.E(c;) to the end of the Dec”’(c;) oracle. Since
S.RO(m) and S.E(c;) now form consecutive classical queries, it follows from the contraposition of 4.(b)
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of Theorem m that, except with probability 2 - 27, 7i; = () implies Enc’(pk, m;; S.RO(m;)) # c;.
Applying the union bound, P implies

P = [V’L tm; = my; V (mz =0A Enc'(pk, mz,SRO(mZ)) #* Cz)]

except with probability gp - 2 - 27", Furthermore, by 2.(c) of Theorem , each swap of a §.RO with a
S.FE query affects the final probability by at most 84/2I'(f)/|R| = 8V2 - 2=7sk. Thus,

PriG4, = 1A P — Pr[GH; = 1A P]‘ < eak

with 2 5 = 2gp - ((qu + qp) - 4V2 - 277k 4 276),

GAME (6. In Go ¢, the decryption oracle Dec” uses m; instead of m; to response to the queries. However,

Dec” still queries S.RO(r}), maintaining the interaction pattern between Dec” and S.RO as in Go 5.
Note that if the event

P, = [’I’ArL/» =m; V (ml =0A Enc'(pk,mi;S.RO(mi)) #* Cl)]

]

holds for a given 4, then the above change will not affect the response of Dec” and thus will not affect the
probability for P41 to hold as well. Therefore, by mathematical induction, the following holds:

Pr[Gys = 1 A P] = Pr[Gy's = 1 A P].

GAME Go7. In Go 7, all 7 = H(1/) queries in Dec” are dropped or, equivalently, moved to the very end of
the game execution. Invoking 2.(c) of Theorem [2.12] once again, the following holds:

|Pr[G3ls = 1 A P] — Pr[G3'; = 1 A P]| < 3.4

with €3 51 = gp - (¢p + qn) - 8V2 - 277k, Also, note that G2 7 works without knowledge of the secret key
sk and thus constitutes a IND-CPA attacker £ against PKE for a fixed key pair (pk, sk). Therefore,

1
Pr[G4L. = 1A P] — 2} < AdvRESRA(E),

where AdeNKDE'g,'ZA(S ) is the advantage of the adversary £ in the IND-CPA game against PKE for a fixed key

pair (pk, sk). Combining the analyses from G2 to G2.7 so far, the following holds:

1 1
Pr[G§4:>1]2': Pr[Géﬁw]Q‘
1
< |Pr[Gy'y = 1] - Pr[Gyly = 1A PT]‘ + [Pr[GsYy = 1A P] — 2’

IN

1
Pr[Géﬂ =1A PW — 2‘ + €15k

IN

PriG2, = 1A P — Pr[Gfs = 1A P]‘ +

1
PI‘[G;% = 1/\P] — 2’ +€175k;

IN

1
PI‘[GS&; =1A P] — 2’ + €15k + €2,5k
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1
= Pr[GéG =1A P] — 5 + 1,5k T €25k

1
< |Pr[G4's = 1 A P] — Pr[G4'; = 1 A P]| + |Pr[Gs; = LA P] — 5| Lk T 25k

1
< PT[G“;? = 1AP] - B} + €1,sk T €2,sk + €35k

< AdvRRESIA (E) + s, (6)

where €4, = €15k + €2,5k + €3,k
GAME (3.1. G31 is defined by modifying i3, moving parts of the set of algorithms C H— (C('f, CIH) to the
game and the algorithm ]-"1H ‘Dec” as shown in Figure Since this change is only conceptual, the following

holds:
Pr[G4' = 1] = Pr[G4Y, = 1].

GAME G32. (G35 is defined by modifying the generation of 7, as shown in Figure Since this change
is only conceptual, the following holds:

Pr[G4Y, = 1] = Pr[G5ly = 1].

GAME G3 3. (333 is defined by moving parts of the game into the algorithm }"(')-' ,Dec”

[20] Since this change is only conceptual, the following holds:

, as defined in Figure

Pr[G3ly = 1] = Pr[G3y = 1].

GAME (G34. (34 is defined by replacing the random oracle H with the extractable RO-simulator S for
the relation Ry := {(z,y) | f(x,y) = t}, where f(x,y) = Enc'(pk,x;y) from Theorem [2.12] as shown
in Figure Furthermore, at the end of the game, the extractor interface S.E is invoked to compute
m; = S.E(c;) for each ¢; that A queried to Dec” during its run. According to the first statement of

Theorem [2.12]
Pr[G4'y = 1] = Pr[G4y = 1].
Furthermore, applying Theorem[2.13|for R’ := {(m, c) : Dec/(sk, c) # m}, the event
P' .= Vi : 1; = == Dec'(sk, ¢;) V 1y = (]
holds except with probability €1 s, := 128(qn + qD)Qésk. Thus,

Pr(G3y = 1] — Pr[G5Y, = 1 A PT]| <1 .

GAME G35. G35 is defined by moving each query S.E(c;) to the end of the Dec”(c;) oracle. Since
S.RO(m) and S.E/(c;) now form consecutive classical queries, it follows from the contraposition of 4.(b)
of Theorem that, except with probability 2 - 27, 7i; = () implies Enc’(pk, m;; S.RO(m;)) # c;.
Applying the union bound, P implies

P = [Vi: 1 = m; V (1h; = 0 A End(pk, mi; S.RO(my;)) # ¢;)]
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GAMES G3.1-G3g DEC”(C 7& C*)
L H« (M —>R) 1G31-G33 1. m/ = Dec'(sk, c) 1G31-Gs6
2: H=S8.RO 11G3.4-G38 2. 7 = H(Th,) 1G3.1-G3¢
3: (pk,sk) < Gen'(1%) 3. if ¢ # Enc/(pk, m'; ) 11G31-G3 5
4: (mg, my) + AP (pk) /|G 1-G3o 4  return L /IGl1-Gls 5
5. (ro,m1) + {0,1}7 x {0,1}" /MGy 5 €lse, l’et“rlz [[)ﬁl’]]em 1G31-Gy 5
- - H.Dec” 6: m' — S.Elc //G3.5-G3.8
6: ’ k /1G3 3-
7. é@’?glif_ fo (p ) G3'3 G3'8 7: if m/ =1, return L //G3.6—G3.8
. ) . 3/ -
§ 1y {0, 1}gr em 8: else, return [rn/]y, . 11G3.6-G3 g
9: Thb = mbHTb //Gg.l—Gg.Q H,Dec”
10: 7+ R 7}—0 (PF)
11: ¢* « Enc(pk, ig; 7) 11 (mo,my) + AJP (pk)
12: 1/ < FrPe (pk, ¢¥) IG31-Gsr 20 (ro,r1) < {0,1}% x {0,1}*
13: b < GH(pk, c*) /IGss 3 return (mo|ro, mal|r1)
14: return [[mb = Th/]] 1G31-G3.7 H Dec”
ec
15: return [b=V] IGss F1 (pk,c)
16: while: € I do /1G3.4 1: 74— {1, s ,qH}
17: 1, + S.E(¢;) /IG3.4  2: Run AP (v, 7) till i-th H-query
3: m/ < measure i-th H-query
4: return m/
GH (pk, ¢)
1: /< FH(pk,c*)
2: if rhg = ™/, return 0
3: else if 1y = 177/, return 1
4: else, return b’ < {0,1}

Figure 20: GAMES G'3.1-G3 g for the proof of Theorem[5.2]

except with probability gp - 2 - 27, Furthermore, by 2.(c) of Theorem 2.12L each swap of S.RO with S.F
affects the final probability by at most 81/2I°(f)/[R| = 8V/2 - 2~7sk. Thus,

‘Pr[G§?4 = 1A P - Pr[GA = 1A P]‘ < o

with €2 5 = 2gp - ((gn + gp) - 4V2 - 277k + 276,
GAME G36. In G3¢, the Dec” oracle uses mg instead of rh; to respond to the queries, but still queries
S.RO(m}), maintaining the interaction pattern from G's 5.

Note that if the event

P; := [m; = m; V (1h; = 0 A Enc(pk, mi; S.RO(my;)) # ¢;)]

holds for a given i, then the above change will not affect the response of Dec” and thus will not affect the
probability for P to hold as well. Thus, by mathematical induction,

Pr(G4's = 1 A P] = Pr[G4s = 1 A P].
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GAME G37. In G3.7, all 7/ = H(1m/) queries in Dec” are dropped or, equivalently, moved to the very end of
the game execution. Invoking 2.(c) of Theorem [2.12] it holds that:

|Pr[G4ls = 1 A P] - Pr[G5; = 1A P]| < e3 4,

where €3 51, = qp - (¢ + qn) - 8V 2 - 277sk. Note that G'3 7 works without the secret key sk.

GAME (35. G3g is defined by constructing the adversary G = (Fo, G1) from the adversary F = (Fo, F1),
as shown in Figure The adversary G is now playing an IND-CPA game with PKE for a fixed key pair
(pk, sk). Similar to the analysis in G 7, it holds that:

1
Pr(Gsls = 1A P] - 5 = AdvBESH (9)-
Also, since G3.8 = 1 holds if G3.7 = 1 hold, the following holds:
1
PI’[Gg_g = 1A P] = PY[G3.7 = 1A P] + 5(1 — PI‘[G3.7 = 1A P])
1 1
= —-Pr[Gs7=1AP]+ -.
5 r[Gs.7 ]+ 5
The above equality can be simplified as follows:
Pr[Gs7 = 1 A P] =2Pr[Gss = 1 A P] — 1 < 2AdviRe S (G).
Combining the analyses from G5 to G g so far, the following inequality holds:
Pr[G4' = 1] = Pr[GY; = 1] = Pr[G5, = 1] = Pr[G4y = 1] = Pr[G5}, = 1]
< Pr[G4y = 1A P 414
< Pr[G{f5 = 1AP|+eg 5 +e1sk = Pr[G{éﬁ = 1 AP+ ¢e35; + €15k
< Pr[G4; = 1A P + €361 + 2,6k + €1,k
= 2AdVINECPA(G) + e .. (7)
The claimed bound is obtained by combining inequalities (3)), (6)), and (7)) as follows and then taking the

expectation over (pk, sk) < Gen'(1*):

_ 1
Advpic i (A) < 2+ (an + ) VPrlGs = 1+ (aw +ap) - 27772 4 |Pr(GF = 1] — 5

<2+ (g + a0) 28V SEAG) + eat + (an + a0) - 277242 + AGVBIRSPAE) + e

< (2gn + 2¢p + 1)\/2Adv}3NKDE'§ZA(Q) + ek + (qn + qp) - 274/2F2.

5.4 FO-Equivalent Transform Without Re-encryption

As in the case of @tEM, we can show that FOpg based on ACWC, can be identically converted into more
efficient transform FOpyg (shown in Figure , where the ciphertext comparison ¢ = Enc’(pk,m/; R') in
Dec” is replaced with a simpler comparison of 7/ = 7”. To do this, we first change Dec” of Figure
into that of Figure which are conceptually identical to each other. Next, we show that Dec” of Figure
[21) works equivalently to that of Figure 22] by proving the Lemma [5.3] As a result, the resulting schemes

FOpyg[PKE', H] and ﬁ;‘KE [PKE’, H] operates identically.
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Dec” (sk, c) Dec” (sk, c)

return L
8: else, return [n/],

1: M' = Dec(sk, c) 1: M' = Dec(sk, c)

2: " = RRec(pk, M, ¢) 2: " = RRec(pk, M, ¢)

3. m' = Inv(M’',G(r")) 3. m' = Inv(M’',G(r"))

4 R :=H(m') 4: R :=H(m/)

5. if m' =1 or|r’' ¢ R or c # Enc'(pk,m’; R') 5: ’r” < 9 with the randomness R’
6: return L

7.

A

else, return [n/],

Figure 21: Modified PKE” = FOpyg[PKE’, H] Figure 22: PKE” = @éKE[pKE” H]

Lemma 5.3. Assume that the output of Dec in PKE always belongs to M, PKE is injective in the injectivity
game of Figure 2] and PKE and SOTP are rigid. Then, 7 € R and ¢ = Enc’(pk, m’; R') in FOpyg holds if
and only if ' = 7" in FOpgg holds.

Proof. The proof is exactly the same as that of Lemma[4.3] except that 72 is used instead of m. O

6 NTRU+

6.1 GenNTRU|[("| (=PKE)

Figure defines GenNTRU[%7] relative to the distribution 7 over R,. Since GenNTRU[%]] should
be MR and RR for our ACWC,, Figure 23| shows two additional algorithms RRec and MRec. We notice
that RRec(h, m, c) is necessary for performing ACWCy where r should be recovered from ¢ once m is
obtained. The RR property guarantees that such a randomness-recovery process works well, because for a
ciphertext ¢ = Enc(h, m,r)= hr + m we see that RRec(h, m,c) = (c — m)h~! = r € R. On the other
hand, MRec(h, r, ¢) is only used for proving IND-CPA security of the ACWCs-transformed scheme. The
security analysis requires that for a challenge ciphertext ¢* = Enc(h, m*,r*)= hr* + m* the algorithm
MRec(h, r*, c*) returns the corresponding message m* if a queried r* was used for c¢*. The MR property
guarantees that once r* is given, MRec(h,r*, c¢*) = ¢* — hr* = m* € M.

Gen(1%) Enc(h,m «+ ] 1 + ¢7)

1: repeat I: return ¢ = hr + m
2 {7 Dec(f, )

— af —
3 f=3f+1 1: return m = (cf mod ¢) mod 3
4: until f is invertible in R,

RRec(h, m, c)

5: repeat _—
6 g Y I: return r = (c — m)h~!
7: until g is invertible in R, MRec(h,r, c)
8: h = 3gf! 1: return m = c — hr
9

: return (pk, sk) = (h,f)

Figure 23: GenNTRU[¢]| with average-case correctness error
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6.1.1 Security Proofs

Theorem 6.1 (OW-CPA security of GenNTRU[%]]). For any adversary .4, there exist adversaries B and C
such that

AdvZiTRUps (A) < Advy i (B) + Advi\ (C).

Proof. We complete our proof through a sequence of games GG to GG1. Let A be the adversary against the
OW-CPA security experiment.

GAME Gy. In Gy, we have the original OW-CPA game with GenNTRU[¢T]. By the definition of the
advantage function of the adversary A against the OW-CPA game, we have that

AdveNTRU[s (A) = Pr(Ggt = 1],

GAME G. In Gy, the public key h in Gen is replaced by h <— R,. Therefore, distinguishing G; from Gg
is equivalent to solving the NTRU,, ; y» problem. More precisely, there exists an adversary B with the same
running time as that of .4 such that

|Pr[Gyt = 1] — Pr(Gy = 1]| < Adv) [R5 (B).

Since h <— R, is now changed to a uniformly random polynomial from R, G is equivalent to solving an
RLWE,, 4,47 problem. Therefore,

PrGi' = 1] = Advpio V5 (C).

Combining all the probabilities completes the proof. O

6.1.2 Average-Case Correctness Error

We analyze the average-case correctness error 0 relative to the distribution Yy = g = T using the
template provided in [30]. We can expand cf in the decryption algorithm as follows:

cf = (hr + m)f = (3gf ~'r + m)(3f' + 1) = 3(gr + mf’) + m.

For a polynomial p in R, let p; be the i-th coefficient of p, and |p;| be the absolute value of p;. Then,
((cf); mod ¢) mod 3 = m; if the following inequality holds:

|3(gr + mf’) + m|, < q%l’

where all coefficients of each polynomial are distributed according to 17" Let ¢; be

-1
¢; = Pr |[3(gr + mf’) —|—rn‘i < (12} .

Then, assuming that each coefficient is independent,

n—1

Pr [Dec(sk, Enc(pk,m)) #m|=1— H €. (8)
=0
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+3 +2 +1 0 +2 | +1 0
17128 | 1/32 | 23/128 | 9/16 1/64 | 3/16 | 19/32

Table 3: Probability distribution of ¢ = ab+b/(a+a’)  Table 4: Probability distribution of ¢ = ab + a't/

Because the coefficients of m have a size at most one,

[ -1
e; = Pr||3(gr + mf') + m|, < 2]

[ —1
> Pr ]3(gr+ mf’)}i + |m|, < q2]

-1
> Pr|[3(gr + mf/)‘i +1< 2]

=Pr ‘gr—l—mf"i < q—3j| = €.

6 7
Therefore,
n n
Pr[Dec(sk, Enc(pk,m)) #m] =1 — H 6 <1-— He; = 0.
i=0 i=0
Now, we analyze €, = Pr [|gr + mf’|, < 4 } To achieve this, we need to analyze the distribution of

gr + mf’. By following the analysis in [30], we can check that for i € [n/2,n], the degree-i coefficient of
gr + mf’ is the sum of n independent random variables:

c=ba+V(a+d)e{0,+1,+2 43}, wherea,b,a,b < ;. )

Additionally, for i € [0,n/2 — 1], the degree-i coefficient of gr + mf’ is the sum of n — 2i random variables
c (as in Equation @)), and 27 independent random variables ¢’ of the form:

d =ba+bda €{0,£1,+2} where a,b,a’, b’ < 9. (10)

Computing the probability distribution of this sum can be done via a convolution (i.e. polynomial multipli-
cation). Define the polynomial:

S g pig X9 = (S35 0,X9) fori = [n/2,n— 1],
8n—2i X 3 gxi) " 0 x7) " fori = [0.n/2 — 1
Z —(3n—2i) Pij A" = Ejzf?) J Z]— 2V ori=[0,n/ ],

where 0; = Pr [c = j] (distribution is shown in Table and 0 = Pr[c’ = j] (distribution is shown in Table
' Let p; ; be the probability that the degree-i coefficient of gr + mf’ is j. Then, €, can be computed as:

pi(X) = an

r_ 2 zj (q+3)/6 Pig fori € [n/2,n —1],
i 2. Zi’m q2_~z_3 s6 iy fori € [0,n/2—1],

where we used the symmetry p; ; = p; ;. Putting €, into Equation , we compute the average-case
correctness error 6 of GenNTRU[¢7].
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6.1.3 Spreadness
Lemma 6.2 (Spreadness). GenNTRU[¢]] is n-spread.

Proof. For a fixed message m and ciphertext c, there exists at most one r such that ¢ = Enc(h, m;r).
Suppose there exist r1 and ry such that ¢ = Enc(h, m;r;) = Enc(h, m;r3). Based on this assumption,
hr; + m = hr, +m holds. By subtracting m and multiplying h~! on both sides of the equation, we obtain
r = r’. Therefore, there exists at most one r such that ¢ = Enc(h, m;r).

For fixed m, to maximize Pr[Enc(h, m;r) = c|, we need to choose ¢ such that ¢ = Enc(h, m;r) for
r = 0. Since there exists only one r such that ¢ = Enc(h, m;r), we have Pr[Enc(h,m;r) = ¢] = 27™.
Since this holds for any (pk, sk) +— Gen(1*) and m € M, GenNTRU[}] is n-spread. O

6.1.4 Injectivity and rigidity

The injectivity of GenNTRU[¢}'] can be easily shown as follows: if there exists an adversary that can yield
two inputs (mj,r;) and (mg,ry) such that Enc(h,m;;r;) = Enc(h, my;rs), the equality indicates that
(r1 —ro)h + (m; — my) = 0, where r1 — ro and m; — my still have small coefficients of length, at most
24/n. For a lattice set

Ly = {(v,w) € Ry x R, :hv +w =0 (in R,)},

(r; —ry, m; — msy) becomes an approximate shortest vector in L'OL. Thus, if the injectivity is broken against
GenNTRU[¢1], we can solve the approximate shortest vector problem (SVP) (of length at most 21/n) over
L. Tt is well-known [16] that the approximate SVP over L3 is at least as hard as the NTRU,, 4,y problem
(defined above). Hence, if the NTRU,, ;,» assumption holds, then the injectivity of GenNTRU[¢7] also
holds.

We can also easily check the rigidity of GenNTRU[¢]'] as follows. For any ¢ € C = R, satisfying the
two conditions m’ = Dec(f,c) € M = {-1,0,1}" and ' = RRec(h,m,c) € R = {-1,0,1}", the
definition of RRec implies r' = (c — m’)h~!. Equivalently, the equality implies that ¢ = hr’ + m’ =
Enc(h, m’; ") holds.

6.2 CPA-NTRU+ (=PKE’)

6.2.1 Instantiation of SOTP

We introduce an instantiation of SOTP = (Encode, Inv), where Encode : M’'xU — M and Inv : M xU —
M, with M" = {0,1}", U4 = {0,1}?", and M = {—1,0,1}", along with distributions 1, = U*" and
Yam = Y7 as shown in Figure which is used for ACWC,. We note that, following [27], the values of
y + ug generated by Inv should be checked to determine whether they are O or 1.

Encode(x € M, u + U?") Inv(y € M,u € U™)
1 u=(ur,ug) € {0,1}" x {0,1}" I u=(ug,ug) € {0,1}" x {0,1}"
2 y=(x®ur) —uz € {-1,0,1}" 2. ify +uz ¢ {0,1}", return L
3: return y 3z =(y+u2) Du €{0,1}"
4: return r

Figure 24: SOTP instantiation for NTRU+KEM
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Message-Hiding and Rigidity Properties of SOTP. It is easily shown that SOTP is message-hiding
because of the one-time pad property, particularly for part z & u;. That is, unless u; is known, the message
x € M’ is unconditionally hidden from y € M. Similarly, = @® u; becomes uniformly random over {0, 1}",
regardless of the message distribution 1,4, and thus the resulting y follows ¢7. In addition, we can easily
check that SOTP is perfectly rigid as long as y + us € {0,1}".

6.2.2 CPA-NTRU+ (=PKE’)

We obtain CPA-NTRU+ := ACWCy [GenNTRU[¢}],SOTP, G] by applying ACWC; from Section (3 to
GenNTRU[#]. Because the underlying GenNTRU[¢}] provides injectivity, MR, and RR properties, The-
orems [3.5] and [3.6] provide us with the IND-CPA security of the resulting CPA-NTRU+- in the classical and
quantum random oracle models, respectively. Regarding the correctness error, Theorem [3.2] shows that the
worst-case correctness error of CPA-NTRU+- and the average-case correctness error of GenNTRU [ dif-
fer by the amount of A = ||¢g|| - (1 + /(In |M’| — In[[¢x[)/2), where ¢» and M’ are specified by 7
and {0, 1}", respectively. For instance, when n = 768, we obtain about A = 271083,

Gen/(1%) Enc’(pk,m € {0,1}"; R « {0,1}*")
1: (pk,sk) := GenNTRU[w?].Gen(l)‘) 1: r < 97 using the randomness R
- repeat 2: m = Encode(m, G(r))
-t g Y 3: ¢ = GenNTRU[¢}].Enc(pk, m;r)
Sf=3f+1 -c=hr+m
- until f is invertible in R, 4: return c
- repeat Dec'(sk, c)
-g Uy 1: m = GenNTRU[?].Dec(sk, c)
- until g is invertible in R, -m = (cf mod ¢) mod 3
- (pk, sk) = (h = 3gf~" mod ¢, f) 2: r = RRec(pk, c,m)
2: return (pk, sk) -r=(c—m)h!
3: m = Inv(m, G(r))
4 ifm=_Lorr ¢ {—1,0,1}", return L
5: return m

Figure 25: CPA-NTRU+

Spreadlless Properties of CPA-NTRU+.  To achieve IND-CCA security of the KEM and PKE via ﬁim
and FOpyg, we need to show the spreadness of CPA-NTRU+. The spreadness can be easily obtained by
combining Lemma [3.7] with Lemmal[6.2]

6.3 NTRU+KEM

Finally, we achieve IND-CCA secure KEM by applying FOM to CPA-NTRU+. We denote such KEM
26,

by NTRU+KEM := @iEM[CPA—NTRU—i—, Hkewm]. Figure . shows the resultant NTRU+KEM, which is
the basis of our implementation in the next section. By combining Theorems {.1} .2 and Lemma[4.3] we
can achieve IND-CCA security of NTRU+KEM. As for the correctness error, NTRU+KEM preserves the
worst-case correctness error of the underlying CPA-NTRU+.
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6.4 NTRU+PKE

Finally, we achieve IND-CCA secure PKE by applying méKE to CPA-NTRU+. We denote such PKE by

NTRU+PKE := @ﬁ{EM[CPA-NTRU—i—, Hpke]. Figure 27| shows the resultant NTRU+PKE, which is the
basis of our implementation in the next section. By combining Theorems and Lemma we can
achieve IND-CCA security of NTRU+PKE. As in NTRU+KEM, NTRU+PKE preserves the worst-case
correctness error of the underlying CPA-NTRU+-.

Gen(1?) Decap(sk, c)
1: repeat 1: m = (cf mod ¢) mod 3
22 g+ Y} 2 r=(c—m)h!
32 f=3f"+1 3: m = Inv(m, G(r))
4: until f is invertible in R, 4: (R, K) = Hkem(m)
5: repeat 5: v’ 1} using the randomness R’
6: g+ Yy 6: ifm=_1lorr#r
7: until g is invertible in 12, 7:  return L
8: return (pk,sk) = (h = 3gf~!,f) 8: else
Encap(pk) 9: return K
1: m <« {0,1}"
2 (R, K) = Hkem(m)
3: r < 97 using the randomness R
4: m = Encode(m, G(r))
5: c=hr+m
6: return (c, K)

Figure 26: NTRU+KEM

Gen(1%) Dec(sk, c)
1: repeat 1: m = (cf mod ¢) mod 3
22 g« Y} 22r=(c—m)h!
3 f=3f+1 3: m = Inv(m, G(r))
4: until f is invertible in R, 4: R' = Hpkg(m)
5: repeat 5: v’ « 1} using the randomness R’
6: g Yy 6: ifm=_1lorr#r
7: until g is invertible in 12, 7 return |
8: return (pk,sk) = (h = 3gf~! f) 8: else
Enc(pk,m € {0,1}"") 9:  return [m],
17 {0, 1}
2 m = mlr € {0, 1}t
3: R= HPKE(’ﬁL)
4: r <= 97 using the randomness R
5: m = Encode(m, G(r))
6: c=hr+m
7: return c

Figure 27: NTRU+PKE
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7 Algorithm Specification

7.1 Preliminaries and notation

Symmetric primitives. NTRU-+{KEM, PKE} use four different hash functions: F, G, Hxgm, and Hpke.
We instantiate these functions with SHA256 and SHAKE256 as described in Algorithms and 4] We
also use SHAKE256 as an extendable output function (XOF).

Algorithm 1: F
Require: Byte array m = (mo, m1," -+ ,M3p/2-1)
Ensure: Byte array B = (bg, b1, -+, b31)
1: (bo, s ,b31) = SHA256(0XO0Hm);
2: return (bo, s b31)

Algorithm 2: G
Require: Byte array m = (mg, my, - - - 7mn/871)
Ensure: Byte array B = (bo, b1, -+ , by /8431)
1: (bo, - -~ bya—1) = SHAKE256(0x01||m, n/4);
2: return (bo, by 4-1)

Algorithm 3: Hxgm

Require: Byte array m = (mg, my, - - - ,mn/S—l)
Ensure: Byte array B = (bg, by, - - - ,bn/4+31)
1: (bg,--- bn/4+31) := SHAKE256(0x02||m,n/4 + 32);
2: return (bo, - - - by, /4431)

Algorithm 4: Hpkp
Require: Byte array m = (mo, m1, -+ , My /z-1)
Ensure: Byte array B = (bo, b1, -+ , by /8431)
1: (bo, -+, bpsa—1) := SHAKE256(0x03||m, n/4);
2: return (bo, - --by/4—1)

Sampling from a Binomial distribution. NTRU+{KEM, PKE} use a centered binomial distribution with
n = 1 for sampling the coefficients of polynomials, as defined in Algorithm[5] Additionally, we introduce
the BytesToBits function in Algorithm|[6] which determines the order of sampled coefficients. BytesToBits
plays a crucial role in the efficient implementation of CBD; and SOTP using AVX2 instructions. We also
define BitsToBytes as the inverse function of BytesToBits.

Algorithm 5: CBD; : B4 — R,
Require: Byte array B = (b, b1, by /4—1)
Ensure: Polynomial f € R,
1: (Bo, -+, Bn—1) := BytesToBits((bo, - , bp/8-1))

: (5717 T 7ﬂ2n—1) = ByteSTOBitS((bn/Ba T 7bn/471))
: for i fromOton —1do

2

3

4 fi = Bi — Bign

s: return f = fo+ fix + for? + -+ fo_1a™ !
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Algorithm 6: BytesToBits

Require: Byte array B = (bo, b1, ,b,/8-1) € B/8
Ensure: Bitarray f = (fo, -+, fn_1) € {0,1}"

1: s = |n/256]
2: r=n— 256s
3: (ro,r1,72,74, 75,76, 77) := bit-decompose(r) Hr=ry20 4 27
4: for i fromOto s — 1 do
5:  for j from O to 7 do
6: t = b32i44j+3|b32i+45+2|D32i44j+1|b32i+4;
7: for k& from O to 1 do
8: for [ from O to 15 do
9: foseit16142j+k = t&1;
10: t=t>>1;
11: ¢1 = 256s, co = 32s
12: ifr; =1
13:  for j from O to 3 do
14; t = beyt4j+3|begt4j+2|begt4j+1(beg+4;
15: for k from O to 1 do
16: for [ from 0 to 16 do
17: Jerrsir2jrk = t&l;
18: t=t>>1;
19: ¢c1 = c1 + 128r7, co = co + 1677
20: ifrg =1
21:  for j from O to 1 do
22: t = beyt4j+3|bestaj+2(ber+4j41]begt4;
23: for k& from O to 1 do
24: for [ from 0 to 15 do
25: fer+ai2j+1 = &1
26: t=t>>1;
27: ¢1 = ¢1 + 64rg, ca = co + 8r¢
28: ifrg =1
29: t = bey+3/bey+2/bey+1/be,
30: for k fromOto 1 do
31: for [ from O to 15 do
32: Jervo1ek = t&l;
33: t=1t>>1;
34: return f = (fo, -+, fn-1)

Semi-generalized one time pad The Encode function of SOTP = (Encode, Inv) is nearly identical to
CBD;, differing only in that it applies an exclusive OR operation to the first half of the random bytes and
the message before sampling from the centered binomial distribution. Consequently, Encode, as defined
in Algorithm [/ also utilizes the BytesToBits function, just like CBD;. Additionally, we introduce the Inv
function in Algorithm 8] which serves as the inverse of the Encode function and utilizes the BitsToBytes
function for byte recovery.
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Algorithm 7: Encode

Require: Message Byte array m = (mq, mq, -+ ,m31)
Require: Byte array B = (b, b1, by /a—1)
Ensure: Polynomial f € R,

1

2
3
4
5
6

: (Boy 5 Pn1) = BytesToBits((bo, cee 7bn/8—1))
. (Bn,++, Ban—1) = BytesToBits((by, /s, -+, bpja—1))
: (mo, -+ ,mp—1) := BytesToBits(m)
: for i fromOton — 1 do
fi = (mi ® Bi) — Bitn
: return f = fo+ fiz + fox® + -+ frg2™ !

Algorithm 8: Inv

Require: Polynomial f € R,
Require: Byte array B = (b, b1, by /4—1)
Ensure: Message Byte array m = (mg, my,--- ,msq)

1

: (50, cee )Bn—l) = BytesToBits((bO, s ,bn/gfl))
. (Bn,++, Ban—1) = BytesToBits((by, /s, -+ , by ja—1))
: for i fromOton — 1 do
if f; + Bitn ¢ {0,1}, return L
m; := ((fi + Bitn)&l) @ B
m = BitsToBytes((mq, -+ ,mp_1))
return m

// Refer to line 8 in Algorithm

Encoding and Decoding. We introduce the Encode,,, function in Algorithm[9]to encode a byte array with

a length equal or less than #,, — 1 to a byte array with length £,,.

defined in Algorithm|[I0] serves as the inverse of Encode,y,.

Additionally, the Decode,,, function,

Algorithm 9: Encode,,

Require: Byte array B = (by, - ,by_1) € B
Ensure: Byte array B’ = (bg, - -- , by, _1) € B‘m

1
2

cifl, — 1 < 4, return L
. return B’ = (bo,--- ,bg_1,0xff, 0, --- 70)

£ bytes £m—0—1 bytes

Algorithm 10: Decode,,

Require: Byte array B = (bg,--- ,by,, 1) € B™
Ensure: Byte array B’ = (b),--- ,b, ) € B

1

:fori=1/4,,—1;71 > 0;i--do
if b; = 0, continue;
else if b; = Oxff, ¢ = i break;

. if 7 = —1, return L

2
3
4:  else, return |
5
6

: return B’ = (b, -+ ,0,_4) = (bo,- -+ ,be—1)
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To encode polynomials in R, into a 3n/2 byte array, we introduce the Encode, function in Algorithms
and This function assumes each coefficient of the polynomial belongs to {0, ...,q — 1} and is stored
as a 16-bit datum. Additionally, we define the Decode, function in Algorithms [I3]and[14]as the inverse of
Encode,. mazx; in Algorithm|I1|and[13]is defined as max; = 8 for NTRU+{KEM, PKE}576, max; = 11
for NTRU+{KEM, PKE}768, and maz; = 17 for NTRU+{KEM, PKE}1152.

Algorithm 11: Encode,
for NTRU+{KEM, PKE}576, NTRU+{KEM, PKE}768, and NTRU+{KEM, PKE}1152
Require: Polynomial f € R,
Ensure: Byte array B = (bo, -, b3p/2-1)
1: for i from O to 15 do
2:  for j from 0 to mazx; do

3: for k from O to 3 do

4 tk = fe4j+iti6k

5: bosj+2i = to

6: bosjr2i+1 = (to >> 8) + (t1 << 4)
7: boeji2it32 = t1 >> 4

8: boej+2i+33 = t2

9: b96j+2i+64 = (tQ >> 8) + (tg << 4)
10: boej+2ir65 = t3 >> 4

11: return (bo, -+ ,b3n/2-1)

Algorithm 12: Encode, for NTRU+{KEM, PKE}864

Require: Polynomial f € R,
Ensure: Byte array B = (bo, - - , b3, /2-1)
1: for ¢ from O to 15 do
for j from O to 12 do
for k from O to 3 do
tk = foajriti6k
bosj+2i = to
b96j+21’+1 = (to >> 8) + (tl << 4)
bogj+2i+32 = 11 >> 4
bo6j+2i+33 = t2
b96j+2i+64 = (t2 >> 8) + (tg << 4)
10: boej+2i+65 = t3 >> 4
11: for ¢ from O to 7 do
12 for k from O to 3 do
13: tk = fs324it8k
14: bioagi2i = to
15: b124842i+1 = (t() >> 8) + (tl << 4)
16:  bi2ast2it16 = t1 >> 4
17: bioagy2ir17 = t2
18: b124842i+32 = (tg >> 8) + (t3 << 4)
19: biogst2itss =tz >> 4
20: return (bo,- -+ ,b3p/2-1)

»

R e AN A
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Algorithm 13: Decode,
for NTRU+{KEM, PKE}576, NTRU+{KEM, PKE}768, and NTRU-+{KEM, PKE}1152

Require: Byte array B = (bo, "+ ,b3,/2-1)
Ensure: Polynomial f € R,
1: for i from O to 15 do
2:  for j from 0 to maz; do
3 to = bogj+2i
4 t1 = byejt2i+1
5 to = bogj+2i+32
6: t3 = boej42i+33
7: tg = bo6j+2i+64
8 t5 = b96j+2i+65
9 f64j+i = t0|(t1&0xf) << 8

10: fogjrivie =t >> 4ty << 4
11: Jeajivsz = t3](t4&0xf) << 8
12: foajpivas = ta >> 4fts << 4
13: return £ = (fo, -+, fn_1)

Algorithm 14: Decode, for NTRU+{KEM, PKE}864

Require: Byte array B = (bo, " -, b3,/2-1)
Ensure: Polynomial f € R,

1: for ¢ from O to 15 do
for j from O to 12 do

N

3 to = boej42i

4 t1 = bygji2it1

5 to = byej+2i+32

6: t3 = bo6j42i+33

7: ty = boej42i164

8 ts = bo6j42i+65

9 f64j+2‘ = t0|(t1&0Xf) << 8

10: foajtitie = t1 >> 4[|ty << 4
11: foajtivsz = t3](ta&0xf) << 8
12: foajivas = ta >> 4fts << 4

13: for ¢ from O to 15 do

14: 1o = b12agy2i

150 t1 = b124842i41

16: 12 = b124842i+16

17: t3 = bi2agy2it17

18:  t4 = b1248+2i132

19:  t5 = b124842i+33

20: f832+2‘ = t0|(t1&0Xf) << 8
21: fogoqirs =11 >> 4ty << 4
22: f832+i+16 = t3’(t4&0Xf) << 8
23: fogoqipoa =ty >> 4lts << 4
24: return f = (fo, -, fn_1)
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« NTRU+{KEM, PKE}576

index[144] = {1, 217, 109, 325, 55, 271, 163, 379, 19, 235, 127, 343, 73, 289,
181, 397, 37, 253, 145, 361, 91, 307, 199, 415, 7, 223, 115, 331, 61, 277, 169,
385, 25, 241, 133, 349, 79, 295, 187, 403, 43, 259, 151, 367, 97, 313, 205, 421,
13, 229, 121, 337, 67, 283, 175, 391, 31, 247, 139, 355, 85, 301, 193, 409, 49,
265, 157, 373, 103, 319, 211, 427, 5, 221, 113, 329, 59, 275, 167, 383, 23, 239,
131, 347, 77, 293, 185, 401, 41, 257, 149, 365, 95, 311, 203, 419, 11, 227, 119,
335, 65, 281, 173, 389, 29, 245, 137, 353, 83, 299, 191, 407, 47, 263, 155, 371,
101, 317, 209, 425, 17, 233, 125, 341, 71, 287, 179, 395, 35, 251, 143, 359, 89,
305, 197, 413, 53, 269, 161, 377, 107, 323, 215, 431};

NTRU+{KEM, PKE}768

index[192] = {1, 289, 145, 433, 73, 361, 217, 505, 37, 325, 181, 469, 109, 397,
253, 541, 19, 307, 163, 451, 91, 379, 235, 523, 55, 343, 199, 487, 127, 415, 271,
559, 7, 295, 151, 439, 79, 367, 223, 511, 43, 331, 187, 475, 115, 403, 259, 547,
25, 313, 169, 457, 97, 385, 241, 529, 61, 349, 205, 493, 133, 421, 277, 565, 13,
301, 157, 445, 85, 373, 229, 517, 49, 337, 193, 481, 121, 409, 265, 553, 31, 319,
175, 463, 103, 391, 247, 535, 67, 355, 211, 499, 139, 427, 283, 571, 5, 293, 149,
437, 77, 365, 221, 509, 41, 329, 185, 473, 113, 401, 257, 545, 23, 311, 167, 455,
95, 383, 239, 527, 59, 347, 203, 491, 131, 419, 275, 563, 11, 299, 155, 443, 83,
371, 227, 515, 47, 335, 191, 479, 119, 407, 263, 551, 29, 317, 173, 461, 101,
389, 245, 533, 65, 353, 209, 497, 137, 425, 281, 569, 17, 305, 161, 449, 89, 377,
233, 521, 53, 341, 197, 485, 125, 413, 269, 557, 35, 323, 179, 467, 107, 395,
251, 539, 71, 359, 215, 503, 143, 431, 287, 575};

NTRU+{KEM, PKE}864 and NTRU+{KEM, PKE}1152

index[288] = {1, 433, 217, 649, 109, 541, 325, 757, 55, 487, 271, 703, 163, 595,
379, 811, 19, 451, 235, 667, 127, 559, 343, 775, 73, 505, 289, 721, 181, 613,
397, 829, 37, 469, 253, 685, 145, 577, 361, 793, 91, 523, 307, 739, 199, 631,
415, 847, 7, 439, 223, 655, 115, 547, 331, 763, 61, 493, 277, 709, 169, 601, 385,
817, 25, 457, 241, 673, 133, 565, 349, 781, 79, 511, 295, 727, 187, 619, 403,
835, 43, 475, 259, 691, 151, 583, 367, 799, 97, 529, 313, 745, 205, 637, 421,
853, 13, 445, 229, 661, 121, 553, 337, 769, 67, 499, 283, 715, 175, 607, 391,
823, 31, 463, 247, 679, 139, 571, 355, 787, 85, 517, 301, 733, 193, 625, 409,
841, 49, 481, 265, 697, 157, 589, 373, 805, 103, 535, 319, 751, 211, 643, 427,
859, 5, 437, 221, 653, 113, 545, 329, 761, 59, 491, 275, 707, 167, 599, 383, 815,
23, 455, 239, 671, 131, 563, 347, 779, 77, 509, 293, 725, 185, 617, 401, 833,

41, 473, 257, 689, 149, 581, 365, 797, 95, 527, 311, 743, 203, 635, 419, 851,

11, 443, 227, 659, 119, 551, 335, 767, 65, 497, 281, 713, 173, 605, 389, 821,

29, 461, 245, 677, 137, 569, 353, 785, 83, 515, 299, 731, 191, 623, 407, 839,

47, 479, 263, 695, 155, 587, 371, 803, 101, 533, 317, 749, 209, o041, 425, 857,
17, 449, 233, 665, 125, 557, 341, 773, 71, 503, 287, 719, 179, 611, 395, 827,

35, 467, 251, 683, 143, 575, 359, 791, 89, 521, 305, 737, 197, 629, 413, 845, 53,
485, 269, 701, 161, 593, 377, 809, 107, 539, 323, 755, 215, 647, 431, 863};

Figure 28: Index for the NTT
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Radix-2 for

" 4 cyclotomic trinomial Radix-3 | Radix-2 d ¢ ¢=3n/d
576 | 3457 1 > 3 7 = —
768 | 3457 1 1 s 1 - —
864 3457 1 ) 4 3 9 T
1152 3457 1 ) 4 4 9 26d

¢ : primitive ¢-th root of unity modulo ¢

Table 5: Combinations of NTT layers

Polynomial rings and Number Theoretic Transform. We define two quotient rings: R = Z[z]/{z" —
2?2 4+ 1) and R, = Zy[z]/ (2™ — 2/? + 1), where n = 2%3° with a,b € NU {0} such that 2 — 2™/2 + 1
is the 3n-th cyclotomic polynomial. To efficiently perform computatlons within the ring R,, we reduce
the computations to the product of smaller rings, denoted as [];~ g ! Zg[w)/{x? — (i), using the Number
Theoretic Transform (NTT). To implement NTT efficiently, we combine three different NTT layers in the
following sequence: Radix-2 NTT layer for the cyclotomic trinomial, Radix-3 NTT layer, and then Radix-
2 NTT layer. We choose to use Radix-3 NTT layers before Radix-2 NTT layers to minimize the size
of pre-computation table. The initial Radix-2 NTT layer for the cyclotomic trinomial, as introduced by
[30], establishes a ring isomorphism from Z,[z]/(z™ — 2"/% 4 1) to the product ring Z,[x]/(z™/? — ¢) x
Zg[x]/{x™/? — (®), where ¢ denotes a primitive sixth root of unity modulo ¢. Subsequently, we use Radix-
3 NTT layers to establish isomorphisms from Z,[z]/(z™ — a3) to the product ring Z,[x]/(z™/> — a) x
Zg[x] /(2™ — aw) x Z,[x]/(x"™/? — aw?), where w denotes a primitive third root of unity modulo g. In the
final step, we use Radix-2 NTT layers to establish isomorphisms from Z[z]/(z™ — ¢?) to the product ring
L[]/ (™% = &) X Zy[x]) [ (2% 4 C). Tablelpresents comprehensive information, including the number of
applied NTT layers and the resulting degree d of component rings in the product rings for various parameter
sets. Note that, for the successful implementation of NTT, it requires a primitive ¢-th root of unity ¢ modulo
g, where ¢ = 3n/d. The values of ¢ and ( for each parameter are also included in Table
Considering efficient implementation of the NTT, we assume the use of an in-place implementation that
does not require reordering of the output values. For clarity, we define NTT as follows:

f _ NTT(f) _ (f mod 2% — Cindex[O] o f mod z¢ — Cindex[n/dfl])
d—1 o d—1 .
= (Z fixlaz +Zx an d+zx f07f17' s fn-1)
1=0 =0

where the array index is defined in Figure In this document, we denote NTT as the number theoretic
transform function and NTT ™! as the inverse number theoretic transform function.

Multiplication in the NTT domain. After transforming polynomials in R, into elements of the product
rings, multiplication is performed within each component ring Z,[z]/(z% — ;). Let a(z) = Z?;é a;jr’ and
b(z) = Zd ! bjx? be polynomials in Zg[z]/(z? — ;).

For d = 2 the product a(z)b(x) is computed as follows:

a(a:)b(x) = (agbo + alblg) + (a0b1 + albo)ﬂf,
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which can be represented in matrix form as:

=[] = [ 1B

For d = 3, the product a(x)b(x) becomes:
a(:r)b(x) = (aobo + (a2b1 + ale)Q) + (a160 + agb1 + azbgci)l‘ + (a2b0 + a1by + aobg)xz.

In matrix form, this is equivalent to:

o ap a2G; aig;| [bo
c(r)=|c1| = |a1 ap a2| |b1
Co az a1 ao by

For d = 4, the product a(x)b(z) is:

c(z) = a(x)b(x) =(aoby + (a1b3 + azbz + azb1)(;) + (aoby + aibg + (a2b3 + azb2)G;)x
+ (aobg + a1b1 + asbg + a3b3<z‘)x2 + (aobg + a1by + asby + a3bo)x3

The corresponding matrix form is:

co ap a3zG a@; ai1G;| |bo
o(z) = | _ a1 a0 a3 aG| b
2 ay ar  ag as| |be
c3 az az ar Qo bs

Inversion in the NTT domain. In the NTT domain, inversion is performed within each component
ring Z,[z]/(x% — ¢;), similar to multiplication. To find the inverse b(z) = Z?;é bjx’ of a polynomial
a(x) = Z;l;é a;x) € Zgy[z]/(z¢ — (;), we use matrix representations.

For d = 2, the inverse b(z) is computed as:

- Bl Tl
bi|  |a1 ao 0] a@—a3 |[—a1 ao 0]  a—a2¢G [~a1]’

For d = 3, the inverse b(z) is:

71 /
bo ap a¢ aig 1 |
— /
bi| = a1 a9 aol 0| =d ai |,
!
b2 a aj a 0 ()
where
/ 2 / 2 / 2
ag = ag — Gjaiaz, aj = (jay — apay, ay = aj — apaz
and

d= ao(a% — Cialag) + Q(Il (a% — aoaz) + {iag(ga% — agal) = a0a6 + Q(alaé + a2a,1).
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For d = 4, finding the inverse of a(z) through matrix inversion is more complex. Instead, we follow the
method in [38], reducing the problem of inversion in the ring Z[z]/(z*— (;) to inversion in Z,[z]/(z? — (),
where z = x2. Thus, a(z) € Z4[y]/(xz* — ;) is rewritten as:

a(x) = ap(z) + a1(z)x, where ao(z) = ag + a2z, ai1(z) = a; + asz.

The product of a(z) = éo(z) + a1(2)x and b(z) = bo(2) + by (2)z is
c(z) = a(z)b(z) = (ao(2) + a1(2)x) - (bo(2) + b1 (2)x)
= Go(2)bo(2) + (a0(2)b1(2) + a1(2)bo(2))x + a1 (2)by1 (2)2?
= (ao(2)bo(2) + a1(2)b1(2)2) + (a0(2)b1 (2) + a1 (2)bo(2))z,

which can be expressed in matrix form as:

o(z) = [ﬁﬂ - [ngz; we } {ngzi] |

To find the inverse b(z) = bo(z) + b1(z)z, we use:

0] - 451 Bl -aeame [0 SET0
_ 212()2 [ aO(Z)J € Zgl2]/(2* = ()

1x2
a¢(z) — a?(2)z |—a(z '

The inverse of a2(2) —a2(2)z € Zy[z]/(z? — ;) can be computed using the case of d = 2. After performing
the necessary operations in Zq[z]/(2* — (;), the final result is obtained by substituting z = z2.

In all cases, we need to compute the multiplicative inverse modulo ¢. To mitigate the risk of side-channel
attacks, we opt for Fermat’s Little Theorem rather than the extended Euclidean algorithm. Fermat’s Little
Theorem states that if a is coprime with g, then a9~* = 1 (mod ¢). Using this theorem, we can compute

the inverse of a by calculating a?~2 mod g.
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7.2 Specification of NTRU+
7.2.1 NTRU+KEM

We describe our NTRU+KEM. Unlike NTRU+KEM in section [6.3] we apply a slightly tweaked @iEM
to resist the multi-target attacks. Algorithms [I3] [T6] and [T7] define the key generation, encapsulatlon and
decapsulation of NTRU+-KEM. Note that, in the key generation algorithm, we multiply hand h™! by 216
to account for the Montgomery reduction.

Algorithm 15: Gen(1%): key generation

Ensure: Public key pk € Bllog2417/8
Ensure: Secret key sk € Bllogz a1 /4
1: repeat
2: d <+ B3
3 f = XOF(d,n/4)
4 £ :=CBDy(f)
5 f:=3f+1
6: f:=NTT(f)
;
8
9

: until f is invertible in 17,
: repeat
. d<+ B*?
10: g := XOF(d,n/4)
11: g’ :=CBDi(g)
122 g:=3¢g
13:  g:=NTT(g)
14: until g is invertible in R,
15: h = go -1
16: pk := Encode,(2' - h)
17: sk := Encode,(f)||Encode, (216 - ﬁfl)HF(pk)
18: return (pk, sk)

Algorithm 16: Encap(pk): encapsulation

Require: Public key pk ¢ Bllog2a1/8
Ensure: Ciphertext ¢ € B8z a1n/8

1. m < B"/®

2: (K,r):=H(m,F(pk))

3: r:= CBDy(r)

4 t=NTT(r)

5: m = Encode(m, G(Encode,(t)))
6: th = NTT(m)

7: 216 . 1 .= Decode, (pk)

8: ¢=hot+m

9: ¢ := Encode,(¢)

_.
4

return (c, K)
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Algorithm 17: Decap(sk, c): decapsulation

Require: Secret key sk e Bllogz aln/4+32
Require: Ciphertext ¢ € Bllog241/8
Ensure: Shared key m € 332
1: Parse sk = (ski, sko, sk3) € Blog2a11/8 . Bllog2q1m/8 . 352

2: f = Decode,(sk1)

3: ¢ = Decode,(c)

4 m=NTT ! éof) mod 3

5. = NTT(m)

6 216.h " = Decode,(sk2)

7: t=(¢—m)oh™? // RRec
8: m' := Inv(m, G(Encode,(1))) // Checking if m’ = is done in line 12
9: (K',r") := H(m/, sk3)

10: v/ := CBDy (1)

11: ¥ =NTT(r)

12: if m' =1L ort # t/, return L /l Check if m' =L orr’ ¢ R,
13: else, return K’

7.2.2 NTRU+ PKE

Finally, we specify our NTRU+PKE for the KpqC competition. As in NTRU+KEM, we apply a slightly
tweaked FOpyg in order to resist the multi-target attacks. Algorithms and [20] define the key genera-
tion, encryption, and decryption of NTRU+PKE, respectively.

Algorithm 18: Gen(1%): key generation

Ensure: Public key pk € Bllegza1m/8
Ensure: Secret key sk € Bllogzaln/4

1: d <+ B3

2: (f,g) :=XOF(d,n/2)

3. f':= CBDy(f)

4: g’ := CBD4(g)

5: f=3f+1

6: g =3g

7. £ = NTT(f)

8: g=NTT(g)

9: if f or g is not invertible in 12, restart
10: fl =go f_l

. pk := Encode,(2'® - h)

sk := Encode, (F)||[Encode, (2'6 - h )| |F(pk)
: return (pk, sk)

s
—

—_
W N
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Algorithm 19: Enc(pk, m): encryption

Require: Public key pk e Bllog2a1/8
Require: Message m € B=tm—1
Ensure: Ciphertext ¢ € Blg2a1n/8

1:

—_ =
— O

X DR R

m = Encode,,(m) € Bt
r« B

m = m||r € BY/®

ri= HPKE(ﬁL, F(pk))

r := CBD;(r)

= NTT(r)

m = Encode(m, G(Encode,(1)))
rh = NTT(m)

216 . h = Decode, (pk)
¢=hot+m

: ¢ := Encode,(¢)
12:

return c

)8 =Ly + 0,

Algorithm 20: Dec(sk, ¢): decryption

Require: Secret key sk € B [logy q]-n/4+32
Require: Ciphertext ¢ € Bllog2417/8
Ensure: Message m € B<fm—1

I: Parse sk = (sk1, sko, sk3) € Blog2a1m/8 x Bllog2al /8 352

—_ = =
W N = O

R A A ol

~ !
. else, return Decode,, ((1g), - - -

f = Decode,(sk1)
¢ = Decode,(c)
m=NTT (éof) mod 3
m = NTT(m)
216 ! — Decode,(sk2)
f=(¢c—m)o h!
NG, - ,m,_q) = Inv(m, G(Encode,(r)))
"= Hpke (', sk3)
r’ := CBD4 ()

>

=1
Il
El

& = NTT(r)

if m’ =1 ort # /, return L

y1,,-1))

/I RRec
// Checking if m/ =_1 is done in line 12

/l Check if m' =L orr’ ¢ R,
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8 Parameters and Security Analysis

We define four parameter sets for NTRU-+{KEM, PKE}, which are listed in Table [7| and (8] respectively.
We call them NTRU-+{KEM, PKE}{576, 768, 864, 1152}, respectively, depending on the degree of the
polynomial 2" — /2 4 1. In all parameter sets, the modulus ¢ is set to 3457, and the coefficients of m
and r are sampled according to the distribution ¥} (i.e., g = a4 = ¥}). For each set of (n, q, Y}, M’ =
{0,1}™), the worst-case correctness error ¢’ is calculated by adding the average-case correctness error ¢ of
GenNTRU[¢}] and the value A = ||¢r |- (14 +/(In|M'] — In[[¢)z|)/2) using the equation from Theorem
Since A is negligible for all parameter sets, the worst-case correctness error of NTRU-+{KEM, PKE}
is almost equal to the average-case correctness error of each corresponding GenNTRU[¢]'] as expected.

Scheme classical quantum
LWE [ NTRU | LWE [ NTRU
NTRU+{KEM,PKE}576 | 115 114 102 101
NTRU+{KEM,PKE}768 | 164 164 144 144
NTRU+{KEM, PKE}864 | 189 189 167 166
NTRU+{KEM, PKE}1152 | 263 266 234 233

Table 6: Concrete Security Level relative to LWE and NTRU problems

To estimate the concrete security level of NTRU+{KEM, PKE}, we analyze the hardness of the two
problems RLWE,, ; y» and NTRU,, ; » based on each parameter set. For the RLWE problem, we employ
the Lattice estimator [[L], which uses the BKZ lattice reduction algorithm [[11] for the best-known lattice
attacks such as the primal [2] and dual [28] attacks. Next, for the NTRU problem, we use the NTRU
estimator provided by the finalist NTRU [10]], which is based on the primal attack and Howgrave-Graham’s
hybrid attack [22] over the NTRU lattice. The primal attack over the NTRU lattice is essentially the same
as the attack using the BKZ algorithm, and Howgrave-Graham’s hybrid attack is also based on the BKZ
algorithm combined with Odlyzko’s Meet-in-the-Middle (MitM) attack [25] on a (reduced) sub-lattice. As
a result, the concrete security level of the NTRU problem is almost the same as that of the RLWE problem.
Table [6] shows the resulting security levels relative to the RLWE and NTRU problems, depending on each
NTRU4{KEM, PKE} parameter set. For the cost model of the BKZ algorithm, we employ 2°-292% [4] and
20-2575 [9]] for the classical and quantum settings, respectively.

Recently, Lee et al. [26] proposed a combinatorial attack that improves upon May’s Meet-LWE attack
[31] and analyzed the concrete security level of NTRU+{KEM, PKE}. Their analysis demonstrated that
the security of NTRU+{KEM, PKE} against their combinatorial attack does not degrade below the level
predicted by the above Lattice and NTRU estimators.

9 Performance Analysis

All benchmarks were obtained on a single core of an Intel Core 17-8700K (Coffee Lake) processor clocked at
3700 MHz. The benchmarking machine was equipped with 16 GB of RAM. Implementations were compiled
using gec version 11.4.0. Table[7]and[§]list the execution time of the reference and AVX2 implementations of
NTRU-+{KEM, PKE}, NTRU, and KYBER, along with the security level, the size of the secret key, public
key, and ciphertext. The execution time was measured as the average cycle counts of 100,000 executions
for the respective algorithms. The source code for NTRU+{KEM, PKE} can be downloaded from https:
//github.com/ntruplus/ntruplus.
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When comparing NTRU and NTRU+KEM, Table [7| shows that both schemes have similar bandwidth
(consisting of a public key and a ciphertext) at comparable security levels. For instance, NTRU+KEM864
at the 189-bit security level requires a bandwidth of 2,592 bytes, and ntruhps4096821 at the 178-bit se-
curity level requires a bandwidth of 2,460 bytes. In terms of storage cost with respect to the secret key,
NTRU+KEM requires almost twice as much storage cost as NTRU. This is because NTRU+KEM stores
(f,h~1 F(pk)) as a secret key rather than only f. However, in terms of execution time, NTRU+KEM
outperforms NTRU, primarily depending on whether NTT-friendly rings are used.

When comparing KYBER and NTRU+KEM, the bandwidth of NTRU+KEM is slightly larger than
that of KYBER at similar security levels. This is because KYBER uses a rounding technique to reduce the
size of a ciphertext. In terms of efficiency, Table [/|shows that, at similar security levels, the key generation
of NTRU+KEM is slower than that of KYBER in the reference implementation. However, the encapsu-
lation and decapsulation of NTRU+KEM is faster than that of KYBER in both the reference and AVX2
implementations.
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A Factoring the trinomial

For a better understanding of applying NTT, we describe how to factor a polynomial in a ring Zs57[z]/(2°76 —
2?88 4+ 1). By utilizing the Radix-2 NTT layer for the cyclotomic trinomial, we can factor 576 — 2288 4 1
as follows:

2576 288 || — (4288 (T2)(288 _ (360)

Here, ¢ t/6 — ¢™ represents a primitive sixth root of unity modulo ¢. Consequently, we can observe that we
can apply a Radix-3 NTT layer because both 25% — (72 and 2288 — (360 can be factorized as:

P28 (T2 (596 (2 (596 () (96 (24 2) (596 (24)(,96 _ (168y(,96  (312)

2288 (360 — (596 _ (120596 120,,y(;96 (1202 _ (596 -120y(;,96 C264)(x96 _ 6408).

Here, w = ¢!/3 = ¢'** is a primitive third root of unity modulo ¢. Similarly, we can observe that we can
apply a Radix-2 NTT layer because both %6 — (%4 and %% — (120 can be further factored by half. For
example, 2°% — (32 can be factored as:

.’E96 _ C24 — (1,48 _ <12)(x48 + <12) — (35'48 _ C12)(x48 _ C12C€/2) — (.%‘48 _ CIZ)(3348 _ <228)

Here, (%2 = ("0 js a primitive second root of unity modulo ¢. If we continue this process, we can factor
the polynomial 2°76 — 2288 4+ 1 all the way down to the degree d = 4.

B Radix-3 NTT layer

For a clearer understanding, we describe the Radix-3 NTT layer used in our implementation. The Radix-3
NTT layer establishes a ring isomorphism between Z,[z]/(z™ — o3) and the product ring Z,[x]/(z™/3 —
Q) x Zy[x]/(x™/3 — B) x Zy[x]/(x™/3 — ), where 3 = aw, and vy = aw? (with w representing a primitive
third root of unity modulo ¢). To transform a polynomial a(z) = ag(z) + ay(z)z™3 + as(x)z®*/3 €
Zg[x] /(2™ — a3) (where ag(z), a1 (), and as(x) are polynomials with a maximum degree of n/3 — 1) into
the form (ag(z), a1(x), a2(x)) € Zy[x]/ (2™ — ) x Zy[x] /(™3 — B) x Z,[z]/(x™/? — ), the following
equations must be computed.

ao(r) = ag(z) + a1 (x)a + az(z)a?,

a1(z) = ao(x) + a1(x)B + az(x) 5%,

ao(x) = ag(z) + ar(x)y + as(x)y>.
Naively, these equations might appear to require 2n multiplications and 2n additions, using six predefined
values: o, o2, B, 52, v, and 72. Nevertheless, by following the techniques in [19], we can significantly
reduce this computational load to n multiplications, n additions, and 4n/3 subtractions, by using only three
predefined values: «, a2, and w, as described in Algorithm

ao(r) = ao(x) + a1(z)a + az(v)a?
a1(x) = ap(z) — az(z)a® + w(ar (z)a — az(z)a?)

ao(x) = ao(z) — a1 (z)a — w(ar (z)a — az(z)a?)
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Algorithm 21: Radix-3 NTT layer

Require: a(z) = ag(x) + a1 (z)x™? + ag(2)x?/? € Zy[x]/(x™ — ¢3)
Ensure: (ig(v),a1(x), da(x)) € Zq[2]/(2"? — @) x Zq[2] [(2™/® — B) x Zy[2]/(2"* — )

1: t1(z) = a1 ()

2: ta(r) = as(x)a?

3: ta(x) = (t1(x) — ta(x))w

4: ag(x) = ag(z) — t1(x) + t3(x)
5. a1(x) = ap(x) — t1(x) + t3(x)
6: ap(x) = ap(x) — t1(x) + ts(x)
7: return (ao(x), a1 (z),az(x))

Considering the aforementioned Radix-3 NTT layer, we need to compute the following equations to
recover a(x) € Zg,[x]/(x™ — ¢3) from (ag(z), a1 (), az(x)) € Zy[z]/(x™3 — @) x Zylz]/(x™3 — B) x
Zyle)/ (@1 7).

3ag(z) = ao(x) + ar(z) + az (96)7
3a1(z) = ag(z)a ™t 4+ ay (2) 7 + ag(z)y 1,
3ag(x) = do(z)a™> + a1 (x)B% + ag(z)y 2

Naively, these equations might appear to require 2n multiplications and 2n additions, using six predefined
values: a1, a2, 6‘1, 5_2, 7_1, and 'y_Q. Nevertheless, by following the techniques in [19], we can
significantly reduce this computational load to n multiplications, n additions, and 4n /3 subtractions, by
employing only four predefined values: o', =2, and w, as described in in Algorithm

3ag(z) = ao(z) + a1(r) + ag(x)
3a1(z) = o ag(z) — ai(z) — wlai(z) — az(x)))
a ™ (

&0($) — dg(l’) + w(&l(a:) —a
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Algorithm 22: Radix-3 Inverse NTT layer

Require: (ag(z),a1(x),az(x)) € Zq[x]/<x”/3 —a) X Zq[x]/<x”/3 — B) x Zq[gc]/<gc"/3 — )
Ensure: 3a(z) = 3ao(x) + 3a1(2)z™3 + 3az(2)x?/? € Zy[z]/(x™ — o?)

1 t1(x) = w(ai(z) — az(x))

2: tg(ﬂ?) = flo(x) —aq (SL‘) — 1 (SC)

3: t3(x) = ap(x) — az(x) + t1(x)

4: 3ap(x) = ag(x) + a1(x) + az(x)

5: 3ay(z) = ta(x)a?

6: 3az(z) = t3(z)a2

7: return 3a(z) = 3ag(x) + 3ay(z)2x"™/> + 3ag(x)x>"/3

Note that we can reuse the predefined table used for NTT in the computation of Inverse NTT.

3ap(z) = ao(x) + a1 (x) + az(x)
3a1(x) = (wa™!)(az(z) — ao(x) — (a1 (x) — do(x))w)
3as(x) = ( Q
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