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Modular Exponentiation Using CRT

ZP(I

2 -log, pq - Multpg
~ 16 - log, p - Multy,

log, d = log, pq

(.- Multpq = 4Multy, p = q)

4 - logy p - Multy

M = C% mod pq

A

CRT

C

Y
(Cp = C mod p,
Cq = C mod q)

p and q are different
prime numbers with p = q.

(.- Mult, ~ Multy)

(M, = C? mod p,
My = C’;q mod gq)

Zp X ZLgq

dp =dmod p—1
dg =dmod qg—1
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Polynomial Multiplication Using NTT

a(z),b(z) ‘ > c(x)

O(n?)
O(nk) O(nk)
(a1(z), -, a9k (T)), ci(z) = a;(z) - bi(x) 1 eitar e ot
(b1@), b (@) ey

fi(z) are relatively prime

and have the same degree. Hf:l Zqlz]/{f:(2)) deg(fi) = 1if k =logn
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Radix-2 NTT Layer

a(z) = ao(z) + a1 (x)z™/?

Zglz]/ (=™ — ¢?)

/\.

Zgla]/(z™/? = ¢) Zg[z]/{z™/? +¢)

ao(x) = ao(x) + a1(x)¢ a1(x) = ao(x) — ar(x)¢

2a0(z) = ao(z) + a1(z)
2a1 (@) = (ao(z) — a1 (2))¢*
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Radix-2 NTT Structure (1)




Radix-2 NTT Structure (2)

k =logn

Zqlxl/(f(x))

i O(n)

Zqlx]/(f1,1(x)) X Zqla]/(f1,2(x))

| om)

i O(n)

T12/2 Zgla/( fro1,i(2))

i O(n)

1 Zql2]/(fr,i(x))

Total : O(nk) = O(nlogn)

deg(f) =n

deg(f1,:) =n/2

deg(fr—1,i) =2

deg(fr,i) =1
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Radix-2 Inverse NTT Structure




Condition for applying NTT (1)

o Zglx]/(x"™ + 1), where n is a power of 2
— ‘C: primitive 2n-th root of unity modulo q‘

o ("# 1 (mod q) fori € [1,2n — 1]
e (* =1 (mod q)

— Fact 1: (" +1=0 (mod q)
e (" —1=(¢"+1)(¢" —1) =0 (mod q)
« By the definition of {, (" —1#0 (mod ¢) = (" +1=0 (mod q)

— Fact 2: ¢* # (7 (mod q) for i,5 € [1,2n] with i # j
o If there exist 4,5 with 1 <4 < j < 2n such that ¢'=¢ (mod q),
then ¢’ =1 (mod q), a contradiction since j — i € [1,2n — 1].
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Condition for applying NTT (2)

o Zglx]/(x"™ 4+ 1), where n is a power of 2

— ‘(: primitive 2n-th root of unity modulo q‘

o "#1 (mod q) fori € [1,2n — 1]
« (™ =1 (mod q)

— Fact 1: ("+1=0 (mod q)

— Fact 2: ¢* # ¢7 (mod q) for 4,5 € [1,2n] with i # j

— 2" +1=2"-(" --Factl
— ( n/2 _ gn/Z)(xn/2 _|_<n/2)
_ ( n/2 _ Cn/2)(l,n/2 _ CSn/Z) -~ Fact 1
_ ( n/4 _ Cn/4)(1.n/4 4 Cn/4)(xn/4 _ an/4)(1’n/4 4 CBn/4)
=@-0-C)z =) (z -

All the factors are distinct (" Fact 2) = they are relatively prime.
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Finding 2n-th root of unity modulo ¢

1. Find a generator g € Z; = {1,--- ,q — 1}.
— g # 1 (mod q) fori € [1,q — 2]
— ¢97' =1 (mod q)

{1a 7q71}:{gla"' 7gq_1}

2. Compute the integer k = 4, ‘assumlng that 2n|qg — 1 ‘

3. Output ¢ = ¢* mod ¢ as a primitive 2n-th root of unity.
— ("= (gF)" £ 1 for i € [1,2n — 1] by the definition of ¢
- = () =g"" =g =1 (mod q)
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Generator Test for g € Z; = {1,...,q— 1} (1)

1. Factorize g —1asq—1=p}*---p,
— p; are distinct primes.

2. Foreachie {1,...,¢}:
— If gle=V/Pi =1 (mod g), then return “g is not a generator.”

3. Return “g is a generator.
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Finding prime numbers ¢ such that 2n|q¢ — 1 (SageMath)

def find_ntt_prime(n,bits):
gs =[J;
k=1;

while True:

q = 2*nxk+1;
if q > 27bits:
break;

if q in Primes():
gs.append(q) ;
k += 1;
return gs;
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Finding generators g of Z; (SageMath)

def find_generator(q):
Zq = IntegerModRing(q);
gs = range(1l,q);

for x in list(factor(q-1)):
p = x[0];
t = [1;
for g in gs:
if Zq(g) " ((q-1)/p) !'= 1:
t.append(Zq(g)) ;
gs = t;

return gs;
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Finding primitive 2n-th root of unity modulo ¢ (SageMath)

def find_w(q):
k = Integer((gq-1)/(2#n));

ws = [g'k for g in find_generator(q)];

return sorted(list(set(ws)));
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Generating Precomputation Table (1)

ao(z) = ao(z) + a1(z)¢ Zglz]/(z™ + 1 ¢™ = —1 (mod
o (2 — an(z) — ar (2)C [ ]/<” ) ( q)
2ao(z) = Go(z) + a1(z) z]/(x™ —¢™)
21(2) = (a0(2) —dr (2))¢ // \

Zqla] /(@™ — ¢7/2) Zglx)/(@/? 4 ¢/2)

TANAN

Zola] /(@™ = C*/h) - Zolal /@l + ¢V Zglal /(a™h = ¢5Y) Zgla] [ (e 4 (PR
I I
Zyla] /(a™/* — (o /) Zg[x]/(am/* = (/%)
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Generating Precomputation Table (2)

ag(z) = ag(z) + a1(z)¢
a1(z) = ag(z) — a1(x)C n
2a9(z) = ao(z) + a1 (x)
2a1(z) = (a0 (x)—a1(2))¢ "

!

n 3n
2 2
n 5n 3n n
4 4 4 4
n 9n 5n 13n 3n 1lin n 15n
8 8 8 8 8 8 8
n 17n 9n 25m 5m 2Im 13n 29n 3n 190 1ln 27n Tn  23n 15m 3ln
6 16 16 16 16 1 16 16 16 16 1 1 16 16 16 1
Il Il Il Il I Il Il I
G C2 (3 Ca ¢s o ¢r s
o -1 _
CiCo—i =¢"=—-1 (mod q) = (; = —C9—; (mod q)
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Generating Precomputation Table (3) (SageMath)

level = Integer(log(n,2));

zetas = [];

tree = zero_matrix(ZZ,level+1,1 << level);
tree[0,0] = n;

for 1 in range(level):
for i in range(l << 1):
tree[1+1,2%i ] = treel[l , il / 2;
tree[1+1,2%i+1] tree[l+1,2*i] + n;

zetas.append (Zq(w) “tree[1+1,2%i]);
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Signed Montgomery Reduction

o Signed Montgomery Reduction [3]

B.
— For0<qg<5:
a = Mont(a) =af™' (mod q)
: . B B
o Constraintson a: —5g<a< 5q
« Range of a: —qg<a<gq

o Montgomery Reduction for Multiplication
— Transform to Montgomery Form

Mont(a - (8% mod ¢)) = a8 (mod q)

Mont(b - (6% mod ¢)) = b3 (mod q)

<
L] b

— Montgomery Multiplication
« ab=abB® (mod q)

« Mont(ab) = Mont(abs?) = abB (mod q)
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NTT Using Montgomery Reduction

a(z) = ao(z) + a1 (x)z"/?

Lylz]/ (=™ — ¢?)

/\

Zgla]/(z™/? = C) Zg[z]/(™/? +¢)

ao(w) = ao(x) + a1(x)¢ a1(x) = ao(x) — a1 (x)¢

Mont(a1(z) x ¢B8 mod q )) = a1(x)¢ mod ¢

pre-computation
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Number Theoretic Transform - Advanced
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Variants of NTT (1)

o Incomplete NTT
= Zylel/ (" + 1) ~ 1L Zole) /(o2 - Gi)

o n=2" for some m € N

« (: primitive (2n/2)-th root of unity modulo ¢

 ¢: prime number with ¢ = (2n/2) - k + 1 for some k € N
o Supports a larger set of modulus ¢ for the NTT

o Example
— Complete NTT in CRYSTAL-KYBER (Round 1)
e n =256, g = 7681

— Incomplete NTT in CRYSTAL-KYBER (Round 2 & 3)
o n =256, ¢ = 3329
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Variants of NTT (2)

o Radix-2 NTT Layer for Cyclotomic Trinomial [2]

= Zgla] /(@ — 2" + 1) = [T, Zale] /(e™/? = Gi)

o n =23 for some a,b € N

o Radix-3 NTT Layer [1]

= Zglal/ ("

= %) R ITy Zyl2)/ (27 = )

o n =23 for some a,b € N

Table: Combinations of NTT layers in NTRU+

n | q '?;d'éTZ Radix-3 | Radix2 | d ¢ | t=3n/d
576 3457 1 2 3 4 81 432
768 3457 1 1 5 4 22 576
864 3457 1 2 4 3 9 864
1152 | 3457 1 2 4 4 9 864
¢ : primitive /-th root of unity modulo ¢
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Radix-2 NTT Layer for Cyclotomic Trinomial (1)

o Ry = Zz]/(a" — 2™ + 1)
— ) : primitive 6-th root of unity modulo ¢
o ' #1 (mod q) for i € [1,5)
o Y5 =1 (mod q)

— Fact 1: 92— +1=0 (mod q)

e W0 —1= @ - )W+ 1)? =9 +1) =0 (mod q)
« By the definition of ¢, ¢ — 1 +1 =0 (mod g)
o Fact 1-1: 3 +1= (v +1)(¥? =¥+ 1) =0 (mod q)

— Fact 2: 22—z +1=(z—¢)(x —¢°)
« (=) (@ —9°) =2 — (Y +¢°) +¢° (mod q)
2=1

o Fact 2-1: ¢ + ¢° Ez/)—_w (mod q)
o Y5 =1 (mod q)

— gt — V2 41 = (ac"/2 — w)(ﬂr”/2 — %) (. Fact 2)
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Radix-2 NTT Layer for Cyclotomic Trinomials (2)

a(z) = ao(z) + a1 (x):l:"/2

Zyle) /(™ — ™2 + 1)

/\

Zq[z)/ (& — ) Zqlx]/ (@™ — )

do(z) = ao(x) +ai(z)y  ai(z) = ao(x) + a1 (x)p®
=ao(z) +ai(z)(1 —v) (. Fact 2-1)
=ao(z) + a1 (z) —ai(z)y
2a0(z) = ao(z) + a1(z) — a1 (z)

a(z) = (ao(e) — ar(2))(¢ - ¢*) "
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Radix-3 NTT Layer (1)

0 Ry = Zyfa)/{a" — (%)
— w : primitive 3-th root of unity modulo ¢
e w'#1 (mod q) fori € [1,2]
o w¥=1 (mod q)

— Fact I: w? +w+1=0 (mod q)
e w—1=(w-1)(W+w+1)=0 (mod q)
« By the definition of w, w? + w+1=0 (mod q)

— Fact 2: 23 = 3 = (z — a)(x — B)(x — )
ca=¢ B=Cw y=(w
« @—a)(z—B)(x—7) =" — (a+B+7)2° + (af + By +ya)z — aBy
e a+B+v=C¢1+w+w?) =0 (mod q) (. Fact 1)
o af+ By +vya=((w+w+w?)
=¢(1+w+w?) =0 (mod q) (. Fact 1)
o afy =Cw® =¢ (mod q)
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Radix-3 NTT Layer (2)

Zqla) /(@™ — o)

a(z) = ao(z) + a1 (x)z™/3 + az(x)x2"/3

> Zqgz]/(x"™/? = a) | do(x) = ao(x) + a1(z)a + az(w)o?

—* Zg[x]/(z™/® — B)

a1(z) = ao(z) + a1(x)B + az(x)B”

= ag(x) — az(z)a? + w(al (z)a — as(z)a?)

| Zgla] /(=™ — )

az(x) = ao(x) + a1(x)y + az(2)y”

= ag(z) — a1 (z)a — wlai (z)a — az(z)a?)
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Radix-3 NTT layer (3)

o NTT

S
L
=
X
QI

1 1 1 1 a o ap(z) ao()
( 1 g 82 [a(z) | =3|a(a)
a? B2 2]\l v ) \a(2) as(z)

— a2+ +y=(a+B+7)* —2(f + By+vya) =0 (mod q)
L+ 4y = (aBy) T aB 4 By +va) =0 (mod g)
B4y

(@ '+ 72 =27+ f7 Iy 4y

(@ 48+ )2 — 20718 1y a+ B +7) =0 (mod q)

e Q
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Radix-3 Inverse NTT Layer (1)

Zylal /(™ = a®) | a(z) = ao() + a1 ()2"/3 + az(x)a2/3

A

1 Zglz]/(z"/3 = @) | Bao(x) = ao(x) + a1(x) + d2(x)

3a1(z) = do(x)a™t + a1 (x)8~! + ag(z)y?!

= o !(ao(2) - a1(e) — w(ai(z) — a2(2)))

| Zq[x]/ (=™ ~ B)

3az(x) = ap(z)a™2 + a1 (x)82 + ao(z)y~?
= a %(ao(z) — a2(e) +w(ai(z) - a2()))

] Zgla]/(z™/® — )
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Example
o Zgla]/(@* — &'? +1) ~ [[;2, Zg[2]/(2* — Gi)

— (: primitive 36-th root of unity modulo gq.
« ¢**=—1 (mod q), ¥ =¢° (mod ¢), w = ¢ (mod q)

o $24 12 + 1= ( 46)(1/.12 _ C30)
= (¢* = ) (2" - C“ )(a? C26)( = M) (@t = ) (et = ¢*Y)
= (2% = Q)(2* = (V) (a® = (") (2? = ¢*°)(a® = (*¥)(a® = ¢*)

a? = ¢O) (2% = () (a® — (M) (2 = ¢*)(a® = T (2% = ¢*)
6 30

‘////l \\\\\\\‘ ‘///// l \\\\\\\‘

(4) 26 10(20) 22

AN A A ay 17/34\35

1 19 7 25 13 31 5 23

20 =¢2=w (modq) = w¢2=¢ (mod q)
AV =¢=w? (modq) = ¢ *=¢* (modq)

T =¢®=-1 (modq) = ¢ '1=-¢" (modygq)
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Radix-3 Inverse NTT Layer (2)

Zg[z]/ (@™ — a®) | a(z) = ao(@) + a1 (2)z™/? + az(z)2*"/3

A

1 Zglz]/(z"/3 = @) | Bao(x) = ao(x) + a1(x) + d2(x)

3a1(z) = do(z)a™t + a1 (x)B~! + ag(z)y !

— Zq[z]/(z"/3 - )
=wa " (az(z) — do(z) — w(ai(z) — ao(z)))

3aa(x) = ap(z)a™2 + a1 (x)82 + ag(z)y 2
" Zy[z]/ (/3 —
A = WP (aa(x) — dr () + w(a (2) — o))
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Helpful Scripts related with NTT

https://github.com/ntruplus/ntt_for_ntruplus/
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https://github.com/ntruplus/ntt_for_ntruplus/

Thank You for Your Attention!

For any questions, please contact me at

yoswuk@korea.ac.kr
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